Date: Mon, 3 Oct 2022 21:20:11 +0800 (CST) Message-ID: <1825437304.3756.1664803211395@izbp1i1jfn47dnwbl698x4z> Subject: Exported From Confluence MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_Part_3755_2133195409.1664803211395" ------=_Part_3755_2133195409.1664803211395 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable Content-Location: file:///C:/exported.html Smart Tables=E5=8F=AF=E4=BD=BF=E7=94=A8=E7=9A=84=E5=85=AC=E5=BC= =8F

Smart Tables=E5=8F=AF=E4=BD=BF=E7=94=A8=E7=9A=84=E5=85=AC=E5=BC=8F<= /h1>

=E6=A0=B9=E6=8D=AEMicrosoft Excel=E5=AE=98=E6=96=B9=E6=96=87=E6= =A1=A3=EF=BC=8C=E4=B8=8B=E8=A1=A8=E5=88=97=E5=87=BA=E4=BA=86Smart Tab= les for Confluence=E4=B8=AD=E5=8C=85=E5=90=AB=E7=9A=84=E6=89=80=E6= =9C=89=E5=85=AC=E5=BC=8F.

=E5=85=B7=E4=BD=93=E4=BD=BF=E7=94=A8=E5=8F=AF=E4=BB=A5=E5=9C=A8=E8=A1=A8= =E6=A0=BC=E7=BC=96=E8=BE=91=E5=99=A8=E4=B8=AD=E8=BF=9B=E8=A1=8C=E8=AE=A1=E7= =AE=97



=E5=85=AC=E5=BC=8F =E4=BD=9C=E7=94=A8
1 ABS Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E7=BB=9D=E5=AF=B9= =E5=80=BC
2 ACCRINT Financial: = =E8=BF=94=E5=9B=9E=E6=94=AF=E4=BB=98=E5=AE=9A=E6=9C=9F=E5=88=A9=E6=81=AF=E7= =9A=84=E8=AF=81=E5=88=B8=E7=9A=84=E5=BA=94=E8=AE=A1=E5=88=A9=E6=81=AF
3 ACOS Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8D=E4=BD=99= =E5=BC=A6
4 ACOSH Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8D=E5=8F=8C= =E6=9B=B2=E4=BD=99=E5=BC=A6
5 ACOT Math and trigonometry: =E8=BF= =94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E4=BD=99=E5=88=87
6 ACOTH Math and trigonometry: =E8=BF= =94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8C=E6=9B=B2=E4=BD=99=E5=88=87=
7 AGGREGATE Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E5=88=97=E8=A1=A8=E6=88=96=E6=95=B0=E6=8D=AE= =E5=BA=93=E4=B8=AD=E7=9A=84=E8=81=9A=E5=90=88
8 AND Logical: &nbs= p;=E5=A6=82=E6=9E=9C=E5=85=B6=E6=89=80=E6=9C=89=E5=8F=82=E6=95=B0=E5=9D=87= =E4=B8=BATRUE=EF=BC=8C=E5=88=99=E8=BF=94=E5=9B=9ETRUE 
9 ARABIC Math and trigonometry: =E5=B0= =86=E7=BD=97=E9=A9=AC=E6=95=B0=E5=AD=97=E8=BD=AC=E6=8D=A2=E4=B8=BA=E9=98=BF= =E6=8B=89=E4=BC=AF=E6=95=B0=E5=AD=97
10 ASIN Math and trigonometry: =E8= =BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8D=E6=AD=A3=E5=BC=A6 =
11 ASINH Math and trigonometry:=E8=BF=94= =E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8D=E5=8F=8C=E6=9B=B2=E6=AD=A3=E5= =BC=A6
12 ATAN Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8D=E6=AD=A3= =E5=88=87
13 ATAN2 Math and trigonometry:&nb= sp;=E4=BB=8Ex=E5=9D=90=E6=A0=87=E5=92=8Cy=E5=9D=90=E6=A0=87=E8=BF=94= =E5=9B=9E=E5=8F=8D=E6=AD=A3=E5=88=87
14 ATANH Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8D=E5=8F=8C= =E6=9B=B2=E6=AD=A3=E5=88=87
15 AVEDEV Statistical: = =E8=BF=94=E5=9B=9E=E6=95=B0=E6=8D=AE=E7=82=B9=E4=B8=8E=E5=85=B6=E5=B9=B3=E5= =9D=87=E5=80=BC=E7=9A=84=E7=BB=9D=E5=AF=B9=E5=81=8F=E5=B7=AE=E7=9A=84=E5=B9= =B3=E5=9D=87=E5=80=BC
16 AVERAGE Statistical: = =E8=BF=94=E5=9B=9E=E5=85=B6=E5=8F=82=E6=95=B0=E7=9A=84=E5=B9=B3=E5=9D=87=E5= =80=BC
17 AVERAGEA Statistical: = =E8=BF=94=E5=9B=9E=E5=85=B6=E5=8F=82=E6=95=B0=E7=9A=84=E5=B9=B3=E5=9D=87=E5= =80=BC=EF=BC=8C=E5=8C=85=E6=8B=AC=E6=95=B0=E5=AD=97=E3=80=81=E6=96=87=E6=9C= =AC=E5=92=8C=E9=80=BB=E8=BE=91=E5=80=BC
18 AVERAGEIF Statistical: = =E8=BF=94=E5=9B=9E=E6=BB=A1=E8=B6=B3=E7=BB=99=E5=AE=9A=E6=9D=A1=E4=BB=B6=E7= =9A=84=E8=8C=83=E5=9B=B4=E5=86=85=E6=89=80=E6=9C=89=E5=8D=95=E5=85=83=E6=A0= =BC=E7=9A=84=E5=B9=B3=E5=9D=87=E5=80=BC=EF=BC=88=E7=AE=97=E6=9C=AF=E5=B9=B3= =E5=9D=87=E5=80=BC=EF=BC=89
19 AVERAGEIFS= Statistical:=E8=BF=94=E5=9B=9E= =E6=BB=A1=E8=B6=B3=E5=A4=9A=E4=B8=AA=E6=9D=A1=E4=BB=B6=E7=9A=84=E6=89=80=E6= =9C=89=E5=8D=95=E5=85=83=E6=A0=BC=E7=9A=84=E5=B9=B3=E5=9D=87=E5=80=BC=EF=BC= =88=E7=AE=97=E6=9C=AF=E5=B9=B3=E5=9D=87=E5=80=BC=EF=BC=89
20 BASE Math and trigonometry:&nb= sp;=E5=B0=86=E6=95=B0=E5=AD=97=E8=BD=AC=E6=8D=A2=E4=B8=BA=E5=85=B7= =E6=9C=89=E7=BB=99=E5=AE=9A=E5=9F=BA=E6=95=B0=EF=BC=88=E5=9F=BA=E6=95=B0=EF= =BC=89=E7=9A=84=E6=96=87=E6=9C=AC=E8=A1=A8=E7=A4=BA=E5=BD=A2=E5=BC=8F
21 BESSELI Engineering: = =E8=BF=94=E5=9B=9E=EF=BC=88x=EF=BC=89=E4=B8=AD=E4=BF=AE=E6=94=B9=E8=BF=87= =E7=9A=84=E8=B4=9D=E5=A1=9E=E5=B0=94=E5=87=BD=E6=95=B0
22 BESSELJ Engineering: = =E8=BF=94=E5=9B=9E=E8=B4=9D=E5=A1=9E=E5=B0=94=E5=87=BD=E6=95=B0Jn=EF=BC=88x= =EF=BC=89
23 BESSELK Engineering: =  =E8=BF=94=E5=9B=9E=E4=BF=AE=E6=94=B9=E5=90=8E=E7=9A=84=E8=B4=9D=E5=A1= =9E=E5=B0=94=E5=87=BD=E6=95=B0Kn=EF=BC=88x=EF=BC=89 
24 BESSELY Engineering: = =E8=BF=94=E5=9B=9E=E8=B4=9D=E5=A1=9E=E5=B0=94=E5=87=BD=E6=95=B0Yn=EF=BC=88x= =EF=BC=89
25 BETA.DIST Statistical: =E8=BF=94=E5= =9B=9Ebeta=E7=B4=AF=E7=A7=AF=E5=88=86=E5=B8=83=E5=87=BD=E6=95=B0
26 BETA.INV Statistical: = =E8=BF=94=E5=9B=9E=E6=8C=87=E5=AE=9Abeta=E5=88=86=E5=B8=83=E7=9A=84=E7=B4= =AF=E7=A7=AF=E5=88=86=E5=B8=83=E5=87=BD=E6=95=B0=E7=9A=84=E5=80=92=E6=95=B0=
27 BETADIST Compatibility: =E8=BF=94= =E5=9B=9Ebeta=E7=B4=AF=E7=A7=AF=E5=88=86=E5=B8=83=E5=87=BD=E6=95=B0<= /td>
28 BETAINV Compatibility: =E8=BF=94=E5=9B=9E=E6=8C=87=E5=AE=9Abeta=E5=88=86=E5=B8=83=E7=9A=84=E7=B4= =AF=E7=A7=AF=E5=88=86=E5=B8=83=E5=87=BD=E6=95=B0=E7=9A=84=E5=80=92=E6=95=B0=
29 BIN2DEC Engineering: = Converts a binary number to decimal
30 BIN2HEX Engineering: = =E5=B0=86=E4=BA=8C=E8=BF=9B=E5=88=B6=E6=95=B0=E8=BD=AC=E6=8D=A2=E4=B8=BA=E5= =8D=81=E5=85=AD=E8=BF=9B=E5=88=B6=E6=95=B0
31 BIN2OCT Engineering: =  =E8=BF=94=E5=9B=9E=E5=8D=95=E4=B8=AA=E9=A1=B9=E7=9A=84=E4=BA=8C=E9=A1= =B9=E5=88=86=E5=B8=83=E6=A6=82=E7=8E=87 
32 BINOM.DIST= Statistical: =E8=BF=94=E5= =9B=9E=E5=8D=95=E4=B8=AA=E9=A1=B9=E7=9A=84=E4=BA=8C=E9=A1=B9=E5=88=86=E5=B8= =83=E6=A6=82=E7=8E=87
33 BINOM.DI= ST.RANGE Statistical: = =E4=BD=BF=E7=94=A8=E4=BA=8C=E9=A1=B9=E5=88=86=E5=B8=83=E8=BF=94=E5=9B=9E=E8= =AF=95=E9=AA=8C=E7=BB=93=E6=9E=9C=E7=9A=84=E6=A6=82=E7=8E=87
34 BINOM.INV Statistical: = =E8=BF=94=E5=9B=9E=E7=B4=AF=E7=A7=AF=E4=BA=8C=E9=A1=B9=E5=88=86=E5=B8=83=E5= =B0=8F=E4=BA=8E=E6=88=96=E7=AD=89=E4=BA=8E=E6=A0=87=E5=87=86=E5=80=BC=E7=9A= =84=E6=9C=80=E5=B0=8F=E5=80=BC
35 BINOMDIST Compatibility: =E8=BF=94= =E5=9B=9E=E5=8D=95=E4=B8=AA=E9=A1=B9=E7=9A=84=E4=BA=8C=E9=A1=B9=E5=88=86=E5= =B8=83=E6=A6=82=E7=8E=87
36 BITAND Engineering:=E8=BF=94=E5=9B=9E=E4=B8=A4= =E4=B8=AA=E6=95=B0=E5=AD=97=E7=9A=84=E2=80=9C=E6=8C=89=E4=BD=8DAnd=E2=80=9D=
37 BITLSHIFT Engineering:=E8=BF=94=E5=9B=9E=E6=8C=89= =E7=A7=BB=E4=BD=8D=E9=87=8F=E4=BD=8D=E5=B7=A6=E7=A7=BB=E7=9A=84=E6=95=B0=E5= =80=BC
38 BITOR Engineering:=E8=BF=94=E5=9B=9E2=E4=B8=AA= =E6=95=B0=E5=AD=97=E7=9A=84=E6=8C=89=E4=BD=8D=E6=88=96
39 BITRSHIFT Engineering:=E8=BF=94=E5=9B=9E=E6=8C=89= =E7=A7=BB=E4=BD=8D=E9=87=8F=E4=BD=8D=E5=8F=B3=E7=A7=BB=E7=9A=84=E6=95=B0=E5= =80=BC
40 BITXOR Engineering:=E8=BF=94=E5=9B=9E=E4=B8=A4= =E4=B8=AA=E6=95=B0=E5=AD=97=E7=9A=84=E6=8C=89=E4=BD=8D=E2=80=9C=E5=BC=82=E6= =88=96=E2=80=9D
41 CEILING Math and trigonometry:&nb= sp;=E5=B0=86=E6=95=B0=E5=AD=97=E8=88=8D=E5=85=A5=E4=B8=BA=E6=9C=80= =E6=8E=A5=E8=BF=91=E7=9A=84=E6=95=B4=E6=95=B0=E6=88=96=E6=9C=80=E6=8E=A5=E8= =BF=91=E7=9A=84=E6=9C=89=E6=95=88=E5=80=8D=E6=95=B0
42 CHAR Text: =E8=BF= =94=E5=9B=9E=E7=94=B1=E4=BB=A3=E7=A0=81=E7=BC=96=E5=8F=B7=E6=8C=87=E5=AE=9A= =E7=9A=84=E5=AD=97=E7=AC=A6
43 CHISQ.DIST= Statistical: = =E8=BF=94=E5=9B=9E=E7=B4=AF=E7=A7=AF=E8=B4=9D=E5=A1=94=E6=A6=82=E7=8E=87=E5= =AF=86=E5=BA=A6=E5=87=BD=E6=95=B0
44 CHISQ.DIST.= RT Statistical: = =E8=BF=94=E5=9B=9E=E5=8D=A1=E6=96=B9=E5=88=86=E5=B8=83=E7=9A=84=E5=8D=95=E5= =B0=BE=E6=A6=82=E7=8E=87
45 CHISQ.INV Statistical: = =E8=BF=94=E5=9B=9E=E7=B4=AF=E7=A7=AF=E8=B4=9D=E5=A1=94=E6=A6=82=E7=8E=87=E5= =AF=86=E5=BA=A6=E5=87=BD=E6=95=B0
46 CHISQ.INV.RT= Statistical: = Returns the inverse of the one-tailed probability of the chi-squared distri= bution
47 CHOOSE Lookup and reference:&nbs= p;=E4=BB=8E=E5=80=BC=E5=88=97=E8=A1=A8=E4=B8=AD=E9=80=89=E6=8B=A9=E4= =B8=80=E4=B8=AA=E5=80=BC
48 CLEAN Text: =E4=BB=8E=E6=96=87= =E6=9C=AC=E4=B8=AD=E5=88=A0=E9=99=A4=E6=89=80=E6=9C=89=E4=B8=8D=E5=8F=AF=E6= =89=93=E5=8D=B0=E7=9A=84=E5=AD=97=E7=AC=A6
49 CODE Text: =E8=BF= =94=E5=9B=9E=E6=96=87=E6=9C=AC=E5=AD=97=E7=AC=A6=E4=B8=B2=E4=B8=AD=E7=AC=AC= =E4=B8=80=E4=B8=AA=E5=AD=97=E7=AC=A6=E7=9A=84=E6=95=B0=E5=AD=97=E4=BB=A3=E7= =A0=81
50 COLUMN Lookup and reference:&nbs= p;=E8=BF=94=E5=9B=9E=E5=BC=95=E7=94=A8=E7=9A=84=E5=88=97=E5=8F=B7
51 COLUMNS Lookup and reference:&nbs= p;Returns the number of columns in a reference
52 COMBIN Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E7=BB=99=E5=AE=9A=E6=95=B0=E9=87=8F=E5=AF=B9= =E8=B1=A1=E7=9A=84=E7=BB=84=E5=90=88=E6=95=B0
53 COMBINA Math and trigonometry:=E8=BF=94=E5=9B=9E= =E7=BB=99=E5=AE=9A=E9=A1=B9=E7=9B=AE=E6=95=B0=E7=9A=84=E9=87=8D=E5=A4=8D=E7= =BB=84=E5=90=88=E6=95=B0
54 COMPLEX Engineering: = =E5=B0=86=E5=AE=9E=E7=B3=BB=E6=95=B0=E5=92=8C=E8=99=9A=E7=B3=BB=E6=95=B0=E8= =BD=AC=E6=8D=A2=E4=B8=BA=E5=A4=8D=E6=95=B0
55 CONCATENATE Text: =E5=B0=86=E5=A4=9A= =E4=B8=AA=E6=96=87=E6=9C=AC=E9=A1=B9=E5=90=88=E5=B9=B6=E4=B8=BA=E4=B8=80=E4= =B8=AA=E6=96=87=E6=9C=AC=E9=A1=B9
56 CONFIDENCE= Compatibility: =E8=BF=94=E5=9B=9E=E6=80=BB=E4=BD=93=E5=B9=B3=E5=9D=87=E5=80=BC=E7=9A=84= =E7=BD=AE=E4=BF=A1=E5=8C=BA=E9=97=B4
57 CONFIDENC= E.NORM Statistical: = =E8=BF=94=E5=9B=9E=E6=80=BB=E4=BD=93=E5=B9=B3=E5=9D=87=E5=80=BC=E7=9A=84=E7= =BD=AE=E4=BF=A1=E5=8C=BA=E9=97=B4
58 CONFIDENCE.T= Statistical:=E4=BD=BF=E7=94=A8Student t= =E5=88=86=E5=B8=83=E8=BF=94=E5=9B=9E=E6=80=BB=E4=BD=93=E5=B9=B3=E5=9D=87=E5= =80=BC=E7=9A=84=E7=BD=AE=E4=BF=A1=E5=8C=BA=E9=97=B4
59 CONVERT Engineering: = =E5=B0=86=E6=95=B0=E5=AD=97=E4=BB=8E=E4=B8=80=E4=B8=AA=E6=B5=8B=E9=87=8F=E7= =B3=BB=E7=BB=9F=E8=BD=AC=E6=8D=A2=E4=B8=BA=E5=8F=A6=E4=B8=80=E4=B8=AA=E6=B5= =8B=E9=87=8F=E7=B3=BB=E7=BB=9F
60 CORREL Statistical: =E8=BF=94=E5= =9B=9E=E4=B8=A4=E4=B8=AA=E6=95=B0=E6=8D=AE=E9=9B=86=E4=B9=8B=E9=97=B4=E7=9A= =84=E7=9B=B8=E5=85=B3=E7=B3=BB=E6=95=B0
61 COS Math and trigonometry:&nb= sp;=E8=BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E4=BD=99=E5=BC=A6
62 COSH Math and trigonometry: = =E8=BF=94=E5=9B=9E=E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8C=E6=9B=B2=E4=BD=99=E5= =BC=A6
63 COT Math and trigonometry:=E8=BF=94=E5=9B=9E= =E6=95=B0=E5=AD=97=E7=9A=84=E5=8F=8C=E6=9B=B2=E4=BD=99=E5=BC=A6
64 COTH Math and trigonometry:=E8=BF=94=E5=9B=9E= =E8=A7=92=E5=BA=A6=E7=9A=84=E4=BD=99=E5=88=87
65 COUNT Statistical: =E8=AE=A1=E7= =AE=97=E5=8F=82=E6=95=B0=E5=88=97=E8=A1=A8=E4=B8=AD=E6=9C=89=E5=A4=9A=E5=B0= =91=E4=B8=AA=E6=95=B0=E5=AD=97
66 COUNTA Statistical: = =E8=AE=A1=E7=AE=97=E5=8F=82=E6=95=B0=E5=88=97=E8=A1=A8=E4=B8=AD=E7=9A=84=E5= =80=BC=E6=95=B0
67 COUNTBLANK= Statistical: = =E8=AE=A1=E7=AE=97=E8=8C=83=E5=9B=B4=E5=86=85=E7=9A=84=E7=A9=BA=E7=99=BD=E5= =8D=95=E5=85=83=E6=A0=BC=E6=95=B0
68 COUNTIF Statistical: = =E7=BB=9F=E8=AE=A1=E6=BB=A1=E8=B6=B3=E7=BB=99=E5=AE=9A=E6=9D=A1=E4=BB=B6=E7= =9A=84=E8=8C=83=E5=9B=B4=E5=86=85=E7=9A=84=E5=8D=95=E5=85=83=E6=A0=BC=E6=95= =B0
69 COUNTIFS Statistical: = =E7=BB=9F=E8=AE=A1=E6=BB=A1=E8=B6=B3=E5=A4=9A=E4=B8=AA=E6=9D=A1=E4=BB=B6=E7= =9A=84=E8=8C=83=E5=9B=B4=E5=86=85=E7=9A=84=E5=8D=95=E5=85=83=E6=A0=BC=E6=95= =B0
70 COVARIANCE.P= Statistical: = Returns covariance, the average of the products of paired deviations
71 COVARIANCE.S= Statistical: = Returns the sample covariance, the average of the products deviations for e= ach data point pair in two data sets
72 CSC Math and trigonometry: Returns = the cosecant of an angle
73 CSCH Math and trigonometry: Returns = the hyperbolic cosecant of an angle
74 CUMIPMT Financial: Re= turns the cumulative interest paid between two periods
75 CUMPRINC Financial: Re= turns the cumulative principal paid on a loan between two periods
76 DATEVALUE Date and time: Converts a date in the form of text to a serial number
77 DAY Date and time: Converts a serial number to a day of the month
78 DAYS Date and time: Returns the numb= er of days between two dates
79 DAYS360 Date and time: Calculates the number of days between two dates based on a 360-day year
80 DB Financial: Re= turns the depreciation of an asset for a specified period by using the fixe= d-declining balance method
81 DDB Financial: Re= turns the depreciation of an asset for a specified period by using the doub= le-declining balance method or some other method that you specify
82 DEC2BIN Engineering: = Converts a decimal number to binary
83 DEC2HEX Engineering: = Converts a decimal number to hexadecimal
84 DEC2OCT Engineering: = Converts a decimal number to octal
85 DECIMAL Math and trigonometry: Converts= a text representation of a number in a given base into a decimal number
86 DEGREES Math and trigonometry:&nb= sp;Converts radians to degrees
87 DELTA Engineering: = Tests whether two values are equal
88 DEVSQ Statistical: = Returns the sum of squares of deviations
89 DOLLARDE Financial: Co= nverts a dollar price, expressed as a fraction, into a dollar price, expres= sed as a decimal number
90 DOLLARFR Financial: Co= nverts a dollar price, expressed as a decimal number, into a dollar price, = expressed as a fraction
91 EFFECT Financial: Re= turns the effective annual interest rate
92 EOMONTH Date and time: Returns the serial number of the last day of the month before or after a = specified number of months
93 ERF Engineering: = Returns the error function
94 ERFC Engineering: = Returns the complementary error function
95 EVEN Math and trigonometry:&nb= sp;Rounds a number up to the nearest even integer
96 EXACT Text: Checks = to see if two text values are identical
97 EXP Math and trigonometry:&nb= sp;Returns e raised to = the power of a given number
98 EXPON.DIST= Statistical: = Returns the exponential distribution
99 EXPONDIST Compatibility: Returns the exponential distribution
100 F.DIST Statistical: = Returns the F probability distribution
101 F.DIST.RT Statistical: = Returns the F probability distribution
102 F.INV Statistical: = Returns the inverse of the F probability distribution
103 F.INV.RT Statistical: = Returns the inverse of the F probability distribution
104 FACTDOUBLE= Math and trigonometry:&nb= sp;Returns the double factorial of a number
105 FALSE Logical: Retu= rns the logical value FALSE
106 FDIST Compatibility: Returns the F probability distribution
107 FINV Statistical: = Returns the inverse of the F probability distribution
108 FISHER Statistical: = Returns the Fisher transformation
109 FISHERINV Statistical: = Returns the inverse of the Fisher transformation
110 FLOOR Compatibility: Rounds a number down, toward zero
111 FORECAST Statistical: = Returns a value along a linear trend
112 FREQUENCY Statistical: = Returns a frequency distribution as a vertical array
113 FV Financial: Re= turns the future value of an investment
114 FVSCHEDULE= Financial: Re= turns the future value of an initial principal after applying a series of c= ompound interest rates
115 GAMMA.DIST= Statistical: = Returns the gamma distribution
116 GAMMA.INV Statistical: = Returns the inverse of the gamma cumulative distribution
117 GAMMADIST Compatibility: Returns the gamma distribution
118 GAMMAINV Compatibility: Returns the inverse of the gamma cumulative distribution
119 GAMMALN Statistical: = Returns the natural logarithm of the gamma function, =CE=93(x)
120 GAMMALN.P= RECISE Statistical: = Returns the natural logarithm of the gamma function, =CE=93(x)
121 GAUSS Statistical: = Returns 0.5 less than the standard normal cumulative distribution
122 GCD Math and trigonometry:&nb= sp;Returns the greatest common divisor
123 GEOMEAN Statistical: = Returns the geometric mean
124 GESTEP Engineering: = Tests whether a number is greater than a threshold value
125 GROWTH Statistical: = Returns values along an exponential trend
126 HEX2BIN Engineering: = Converts a hexadecimal number to binary
127 HEX2DEC Engineering: = Converts a hexadecimal number to decimal
128 HEX2OCT Engineering: = Converts a hexadecimal number to octal
129 HOUR Date and time: Converts a serial number to an hour
130 HYPGEOM.DIST= Statistical: = Returns the hypergeometric distribution
131 HYPGEOMDIST Compatibility: Returns the hypergeometric distribution
132 IMABS Engineering: = Returns the absolute value (modulus) of a complex number
133 IMAGINARY Engineering: = Returns the imaginary coefficient of a complex number
134 IMARGUMENT= Engineering: = Returns the argument theta, an angle expressed in radians
135 IMCONJUGATE Engineering: = Returns the complex conjugate of a complex number
136 IMCOS Engineering: = Returns the cosine of a complex number
137 IMCOSH Engineering: = Returns the hyperbolic cosine of a complex number
138 IMCOT Engineering: Returns the cotang= ent of a complex number
139 IMCSC Engineering: Returns the coseca= nt of a complex number
140 IMCSCH Engineering: Returns the hyperb= olic cosecant of a complex number
141 IMDIV Engineering: = Returns the quotient of two complex numbers
142 IMEXP Engineering: = Returns the exponential of a complex number
143 IMLN Engineering: = Returns the natural logarithm of a complex number
144 IMLOG10 Engineering: = Returns the base-10 logarithm of a complex number
145 IMLOG2 Engineering: = Returns the base-2 logarithm of a complex number
146 IMPOWER Engineering: = Returns a complex number raised to an integer power
147 IMPRODUCT Engineering: = Returns the product of complex numbers
148 IMREAL Engineering: = Returns the real coefficient of a complex number
149 IMSEC Engineering: Returns the secant= of a complex number
150 IMSECH Engineering: Returns the hyperb= olic secant of a complex number
151 IMSIN Engineering: = Returns the sine of a complex number
152 IMSINH Engineering: Returns the hyperb= olic sine of a complex number
153 IMSQRT Engineering: = Returns the square root of a complex number
154 IMSUB Engineering: = Returns the difference between two complex numbers
155 IMSUM Engineering: = Returns the sum of complex numbers
156 IMTAN Engineering: Returns the tangen= t of a complex number
157 INT Math and trigonometry:&nb= sp;Rounds a number down to the nearest integer
158 INTERCEPT Statistical: = Returns the intercept of the linear regression line
159 IPMT Financial: Re= turns the interest payment for an investment for a given period
160 IRR Financial: Re= turns the internal rate of return for a series of cash flows
161 ISBLANK Information: = Returns TRUE if the value is blank
162 ISEVEN Information: = Returns TRUE if the number is even
163 ISLOGICAL Information: = Returns TRUE if the value is a logical value
164 ISNONTEXT Information: = Returns TRUE if the value is not text
165 ISNUMBER Information: = Returns TRUE if the value is a number
166 ISODD Information: = Returns TRUE if the number is odd
167 ISODD Information: = Returns TRUE if the number is odd
168 ISOWEEKNUM= Date and time: Returns the numb= er of the ISO week number of the year for a given date
169 ISTEXT Information: = Returns TRUE if the value is text
170 LCM Math and trigonometry:&nb= sp;Returns the least common multiple
171 LEFT Tex= t: Returns the leftmost= characters from a text value
172 LEN Tex= t: Returns the number o= f characters in a text string
173 LINEST Statistical: = Returns the parameters of a linear trend
174 LN Math and trigonometry:&nb= sp;Returns the natural logarithm of a number
175 LOG Math and trigonometry:&nb= sp;Returns the logarithm of a number to a specified base
176 LOG10 Math and trigonometry:&nb= sp;Returns the base-10 logarithm of a number
177 LOGEST Statistical: = Returns the parameters of an exponential trend
178 LOGNORM.DIST= Statistical: = Returns the cumulative lognormal distribution
179 LOGNORM.INV Statistical: = Returns the inverse of the lognormal cumulative distribution
180 LOGNORMDIST Compatibility: Returns the cumulative lognormal distribution
181 LOWER Text: Convert= s text to lowercase
182 MAX Statistical: = Returns the maximum value in a list of arguments
183 MAXA Statistical: = Returns the maximum value in a list of arguments, including numbers, text, = and logical values
184 MEDIAN Statistical: = Returns the median of the given numbers
185 MIN Statistical: = Returns the minimum value in a list of arguments
186 MINA Statistical: = Returns the smallest value in a list of arguments, including numbers, text,= and logical values
187 MINUTE Date and time: Converts a serial number to a minute
188 MIRR Financial: Re= turns the internal rate of return where positive and negative cash flows ar= e financed at different rates
189 MOD Math and trigonometry:&nb= sp;Returns the remainder from division
190 MODE.MULT Statistical: = Returns a vertical array of the most frequently occurring, or repetitive va= lues in an array or range of data
191 MODE.SNGL Statistical: = Returns the most common value in a data set
192 MONTH Date and time: Converts a serial number to a month
193 MROUND Math and trigonometry:&nb= sp;Returns a number rounded to the desired multiple
194 MULTINOMIAL Math and trigonometry:&nb= sp;Returns the multinomial of a set of numbers
195 NEGBINOM.DI= ST Statistical: = Returns the negative binomial distribution
196 NEGBINOMDIST= Compatibility: Returns the negative binomial distribution
197 NETWORKDAYS Date and time: Returns the number of whole workdays between two dates
198 NOMINAL Financial: Re= turns the annual nominal interest rate
199 NORM.DIST Statistical: = Returns the normal cumulative distribution
200 NORM.INV Compatibility: Returns the inverse of the normal cumulative distribution
201 NORM.S.DIST Statistical: = Returns the standard normal cumulative distribution
202 NORM.S.INV= Statistical: = Returns the inverse of the standard normal cumulative distribution
203 NORMDIST Compatibility: Returns the normal cumulative distribution
204 NORMINV Statistical: = Returns the inverse of the normal cumulative distribution
205 NORMSDIST Compatibility: Returns the standard normal cumulative distribution
206 NORMSINV Compatibility: Returns the inverse of the standard normal cumulative distribution
207 NOT Logical: Reve= rses the logic of its argument
208 NOW Date and time: Returns the serial number of the current date and time
209 NPER Financial: Re= turns the number of periods for an investment
210 NPV Financial: Re= turns the net present value of an investment based on a series of periodic = cash flows and a discount rate
211 OCT2DEC Engineering: = Converts an octal number to decimal
212 OCT2HEX Engineering: = Converts an octal number to hexadecimal
213 ODD Math and trigonometry:&nb= sp;Rounds a number up to the nearest odd integer
214 OR Logical: Retu= rns TRUE if any argument is TRUE
215 PEARSON Statistical: = Returns the Pearson product moment correlation coefficient
216 PERMUT Statistical: = Returns the number of permutations for a given number of objects
217 PERMUTATIONA= Statistical: Returns the number= of permutations for a given number of objects (with repetitions) that can = be selected from the total objects
218 PHI Statistical: Returns the value = of the density function for a standard normal distribution
219 PI Math and trigonometry:&nb= sp;Returns the value of pi
220 PMT Financial: Re= turns the periodic payment for an annuity
221 POISSON.DIST= Statistical: = Returns the Poisson distribution
222 POWER Math and trigonometry:&nb= sp;Returns the result of a number raised to a power
223 PPMT Financial: Re= turns the payment on the principal for an investment for a given period
224 PROB Statistical: = Returns the probability that values in a range are between two limits
225 PRODUCT Math and trigonometry:&nb= sp;Multiplies its arguments
226 PROPER Text: Capital= izes the first letter in each word of a text value
227 PV Financial: Re= turns the present value of an investment
228 QUARTILE.EXC= Statistical: = Returns the quartile of the data set, based on percentile values from 0..1,= exclusive
229 QUARTILE.INC= Statistical: = Returns the quartile of a data set
230 QUOTIENT Math and trigonometry:&nb= sp;Returns the integer portion of a division
231 RAND Math and trigonometry:&nb= sp;Returns a random number between 0 and 1
232 RANDBETWEEN Math and trigonometry:&nb= sp;Returns a random number between the numbers you specify
233 RANK.AVG Statistical: = Returns the rank of a number in a list of numbers
234 RANK.EQ Statistical: = Returns the rank of a number in a list of numbers
235 RATE Financial: Re= turns the interest rate per period of an annuity
236 REPT Text: Repeats= text a given number of times
237 RIGHT Tex= t: Returns the rightmos= t characters from a text value
238 ROMAN Math and trigonometry:&nb= sp;Converts an arabic numeral to roman, as text
239 ROUND Math and trigonometry:&nb= sp;Rounds a number to a specified number of digits
240 ROUNDDOWN Math and trigonometry:&nb= sp;Rounds a number down, toward zero
241 ROUNDUP Math and trigonometry:&nb= sp;Rounds a number up, away from zero
242 ROW Lookup and reference:&nbs= p;Returns the row number of a reference
243 ROWS Lookup and reference:&nbs= p;Returns the number of rows in a reference
244 RRI Financial: Returns an equivalen= t interest rate for the growth of an investment
245 RSQ Statistical: = Returns the square of the Pearson product moment correlation coefficient
246 SEC Math and trigonometry: Returns = the secant of an angle
247 SECH Math and trigonometry: Returns = the hyperbolic secant of an angle
248 SECOND Date and time: Converts a serial number to a second
249 SERIESSUM Math and trigonometry:&nb= sp;Returns the sum of a power series based on the formula
250 SIGN Math and trigonometry:&nb= sp;Returns the sign of a number
251 SIN Math and trigonometry:&nb= sp;Returns the sine of the given angle
252 SINH Math and trigonometry:&nb= sp;Returns the hyperbolic sine of a number
253 SKEW Statistical: = Returns the skewness of a distribution
254 SKEW.P Statistical: Returns the skewne= ss of a distribution based on a population: a characterization of the degre= e of asymmetry of a distribution around its mean
255 SLN Financial: Re= turns the straight-line depreciation of an asset for one period
256 SLOPE Statistical: = Returns the slope of the linear regression line
257 SMALL Statistical: = Returns the k-th smallest value in a data set
258 SQRT Math and trigonometry:&nb= sp;Returns a positive square root
259 SQRTPI Math and trigonometry:&nb= sp;Returns the square root of (number * pi)
260 STANDARDIZE Statistical: = Returns a normalized value
261 STDEV.P Statistical: = Calculates standard deviation based on the entire population
262 STDEV.S Statistical: = Estimates standard deviation based on a sample
263 STDEVA Statistical: = Estimates standard deviation based on a sample, including numbers, text, an= d logical values
264 STDEVP Compatibility: Calculates standard deviation based on the entire population
265 STDEVPA Statistical: = Calculates standard deviation based on the entire population, including num= bers, text, and logical values
266 STEYX Statistical: = Returns the standard error of the predicted y-value for each x in the regre= ssion
267 SUBSTITUTE= Text: Substit= utes new text for old text in a text string
268 SUBTOTAL Math and trigonometry:&nb= sp;Returns a subtotal in a list or database
269 SUM Math and trigonometry:&nb= sp;Adds its arguments
270 SUMIF Math and trigonometry:&nb= sp;Adds the cells specified by a given criteria, only two param= s SUMIF(RANGE, CRITERIA)
271 SUMIFS Math and trigonometry:&nb= sp;Adds the cells in a range that meet multiple criteria, only two p= arams SUMIFS(RANGE, CRITERIA)
272 SUMPRODUCT= Math and trigonometry:&nb= sp;Returns the sum of the products of corresponding array components=
273 SUMSQ Math and trigonometry:&nb= sp;Returns the sum of the squares of the arguments
274 SUMX2MY2 Math and trigonometry:&nb= sp;Returns the sum of the difference of squares of corresponding val= ues in two arrays
275 SUMX2PY2 Math and trigonometry:&nb= sp;Returns the sum of the sum of squares of corresponding values in = two arrays
276 SUMXMY2 Math and trigonometry:&nb= sp;Returns the sum of squares of differences of corresponding values= in two arrays
277 SWITCH Logical: Evaluates an expressio= n against a list of values and returns the result corresponding to the firs= t matching value. If there is no match, an optional default value may be re= turned.
278 SYD Financial: Re= turns the sum-of-years' digits depreciation of an asset for a specified per= iod
279 T.DIST Statistical: = Returns the Percentage Points (probability) for the Student t-distribution<= /td>
280 T.DIST.2T Statistical: = Returns the Percentage Points (probability) for the Student t-distribution<= /td>
281 T.DIST.RT Statistical: = Returns the Student's t-distribution
282 T.INV Statistical: = Returns the t-value of the Student's t-distribution as a function of the pr= obability and the degrees of freedom
283 T.INV.2T Statistical: = Returns the inverse of the Student's t-distribution
284 TAN Math and trigonometry:&nb= sp;Returns the tangent of a number
285 TANH Math and trigonometry:&nb= sp;Returns the hyperbolic tangent of a number
286 TBILLEQ Financial: Re= turns the bond-equivalent yield for a Treasury bill
287 TBILLPRICE= Financial: Re= turns the price per $100 face value for a Treasury bill
288 TBILLYIELD= Financial: Re= turns the yield for a Treasury bill
289 TDIST Compatibility: Returns the Student's t-distribution
290 TIME Date and time: 
291 TIMEVALUE Date and time: =E5=B0=86= =E6=96=87=E6=9C=AC=E5=BD=A2=E5=BC=8F=E7=9A=84=E6=97=B6=E9=97=B4=E8=BD=AC=E6= =8D=A2=E4=B8=BA=E5=BA=8F=E5=88=97=E5=8F=B7
292 TINV

Compatibility: = =E8=BF=94=E5=9B=9EStudent-t=E5=88=86=E5=B8=83=E7=9A=84=E5=80=92=E6=95= =B0

293 TODAY Date and time: =E8=BF=94=E5=9B=9E=E4=BB=8A=E5=A4=A9=E6=97=A5=E6=9C=9F=E7=9A=84=E5=BA=8F= =E5=88=97=E5=8F=B7
294 TRANSPOSE Lookup and reference:=E8=BF=94=E5=9B=9E= =E6=95=B0=E7=BB=84=E7=9A=84=E8=BD=AC=E7=BD=AE
295 TREND Statistical:=E6=B2=BF=E7=BA=BF= =E6=80=A7=E8=B6=8B=E5=8A=BF=E8=BF=94=E5=9B=9E=E5=80=BC
296 TRIM Text: =E4=BB= =8E=E6=96=87=E6=9C=AC=E4=B8=AD=E5=88=A0=E9=99=A4=E7=A9=BA=E6=A0=BC
297 TRIMMEAN Statistical: Returns the = mean of the interior of a data set
298 TRUE Logical: =E8= =BF=94=E5=9B=9E=E9=80=BB=E8=BE=91=E5=80=BCTRUE
299 TRUNC Math and trigonometry:=E5=B0=86=E6=95=B0= =E5=AD=97=E6=88=AA=E6=96=AD=E4=B8=BA=E6=95=B4=E6=95=B0
300 UNICODE Text:=E8=BF=94=E5=9B=9E=E4=B8=8E=E6=96= =87=E6=9C=AC=E7=9A=84=E7=AC=AC=E4=B8=80=E4=B8=AA=E5=AD=97=E7=AC=A6=E5=AF=B9= =E5=BA=94=E7=9A=84=E6=95=B0=E5=AD=97=EF=BC=88=E4=BB=A3=E7=A0=81=E7=82=B9=EF= =BC=89
301 UNIQUE Lookup and reference: =E8= =BF=94=E5=9B=9E=E5=88=97=E8=A1=A8=E6=88=96=E8=8C=83=E5=9B=B4=E4=B8=AD=E5=94= =AF=E4=B8=80=E5=80=BC=E7=9A=84=E5=88=97=E8=A1=A8
302 UPPER Text: =E5=B0= =86=E6=96=87=E6=9C=AC=E8=BD=AC=E6=8D=A2=E4=B8=BA=E5=A4=A7=E5=86=99
303 VAR.P Statistical:=E5=9F=BA=E4=BA=8E=E6=95=B4= =E4=B8=AA=E6=80=BB=E4=BD=93=E8=AE=A1=E7=AE=97=E6=96=B9=E5=B7=AE
304 VAR.S Statistical: =E5=9F=BA=E4= =BA=8E=E6=A0=B7=E6=9C=AC=E4=BC=B0=E8=AE=A1=E6=96=B9=E5=B7=AE
305 VARA Statistical:=E5=9F=BA=E4=BA=8E=E6=A0=B7= =E6=9C=AC=E4=BC=B0=E8=AE=A1=E6=96=B9=E5=B7=AE=EF=BC=8C=E5=8C=85=E6=8B=AC=E6= =95=B0=E5=AD=97=E3=80=81=E6=96=87=E6=9C=AC=E5=92=8C=E9=80=BB=E8=BE=91=E5=80= =BC
306 VARP Compatibility: =E5=9F=BA= =E4=BA=8E=E6=95=B4=E4=B8=AA=E6=80=BB=E4=BD=93=E8=AE=A1=E7=AE=97=E6=96=B9=E5= =B7=AE
307 VARPA Statistical: =E5=9F=BA=E4= =BA=8E=E6=95=B4=E4=B8=AA=E6=80=BB=E4=BD=93=EF=BC=88=E5=8C=85=E6=8B=AC=E6=95= =B0=E5=AD=97=E3=80=81=E6=96=87=E6=9C=AC=E5=92=8C=E9=80=BB=E8=BE=91=E5=80=BC= =EF=BC=89=E8=AE=A1=E7=AE=97=E6=96=B9=E5=B7=AE
308 WEEKDAY Date and time: =E5=B0=86= =E5=BA=8F=E5=88=97=E5=8F=B7=E8=BD=AC=E6=8D=A2=E4=B8=BA=E4=B8=80=E5=91=A8=E4= =B8=AD=E7=9A=84=E6=9F=90=E4=B8=80=E5=A4=A9
309 WEEKNUM Date and time: =E5=B0=86= =E5=BA=8F=E5=88=97=E5=8F=B7=E8=BD=AC=E6=8D=A2=E4=B8=BA=E4=B8=80=E4=B8=AA=E6= =95=B0=E5=AD=97=EF=BC=8C=E8=AF=A5=E6=95=B0=E5=AD=97=E8=A1=A8=E7=A4=BA=E4=B8= =80=E5=91=A8=E4=B8=8E=E4=B8=80=E5=B9=B4=E7=9A=84=E6=95=B0=E5=AD=97=E4=B8=80= =E8=87=B4
310 WEIBULL.DIST= Statistical:=E8=BF=94=E5=9B=9E=E5=A8=81= =E5=B8=83=E5=B0=94=E5=88=86=E5=B8=83
311 WORKDAY Date and time: =E8=BF=94= =E5=9B=9E=E6=8C=87=E5=AE=9A=E5=B7=A5=E4=BD=9C=E6=97=A5=E6=95=B0=E4=B9=8B=E5= =89=8D=E6=88=96=E4=B9=8B=E5=90=8E=E7=9A=84=E6=97=A5=E6=9C=9F=E5=BA=8F=E5=88= =97=E5=8F=B7
312 XNPV Financial: =E8=BF=94=E5= =9B=9E=E4=B8=8D=E4=B8=80=E5=AE=9A=E6=98=AF=E5=91=A8=E6=9C=9F=E6=80=A7=E7=9A= =84=E7=8E=B0=E9=87=91=E6=B5=81=E6=98=8E=E7=BB=86=E8=A1=A8=E7=9A=84=E5=87=80= =E7=8E=B0=E5=80=BC
313 XOR Logical:=E8=BF=94=E5=9B=9E=E6=89=80=E6= =9C=89=E5=8F=82=E6=95=B0=E7=9A=84=E9=80=BB=E8=BE=91=E5=BC=82=E6=88=96
314 YEARFRAC Date and time: =E8=BF=94= =E5=9B=9E=E8=A1=A8=E7=A4=BA=E5=BC=80=E5=A7=8B=E6=97=A5=E6=9C=9F=E5=92=8C=E7= =BB=93=E6=9D=9F=E6=97=A5=E6=9C=9F=E4=B9=8B=E9=97=B4=E7=9A=84=E5=A4=A9=E6=95= =B0=E7=9A=84=E5=B9=B4=E4=BB=BD=E5=88=86=E6=95=B0
------=_Part_3755_2133195409.1664803211395 Content-Type: application/octet-stream Content-Transfer-Encoding: base64 Content-Location: file:///C:/d47d98b554992164c956a8aecf8685a5 iVBORw0KGgoAAAANSUhEUgAABzQAAAI8CAYAAACXj50sAAAgAElEQVR4nOy9eXQU16Huy0qy7iLn Zb34nbPuy1lv5Zzkvbx7fdd5695jJ5x7olwfmxDjWDGxTAy28RDAYAuDYsAWwcbCKGCEAWOwMZMx CIvBmEmyBrDEIAGyGIUkxCCEZlBLIAm15tbE9/7oru7q7upJXd17d/X3W+v3h7qrq/eu2lXqqq/2 3qNGxWaAUkoppZRSSimllFJKKaWUUkqlVHgBKKWUUkoppZRSSimllFJKKaXUk8ILQCmllFJKKaWU UkoppZRSSimlnhReAEoppZRSSimllFJKKaWUUkop9aTwAlBKKaWUUkoppZRSSimllFJKqSeFF4BS SimllFJKKaWUUkoppZRSSj0pvACUUkoppZRSSimllFJKKaWUUupJ4QWglFJKKaWUUkoppZRSSiml lFJPCi8ApZRSSuVz0iWMmmbGqBkDGPUaaChUtrXocujlyyaMmlwuvu1SSimllFKp/d5jm/D9mBT8 YMx7lFIa1X4/JgXfe2yT8PMypRGj8AJQSimlVC5fNokPx6JBZXuLLofe/rlFfBumlFJKKaVS+v2Y D4UHCJRSKpvfj/lQ+PmZ0ohQeAEopZRSKo+Ty8UHYtGiss1FlyMUsqcmpZRSSil18XuPbRIeGlBK qayypyalfii8AJRSSimVR/bODJ/KNhddjlA4Y0B8W6aUUkoppVLJYWYppdSz349JEX6eplR6hReA UkoppfI4vUd8GBYtKttcdDlCXT9KKaWUUkpjM4SHBZRSKruiz9OUSq/wAlBKKaVUHkWHYNGk0be5 6LZMKaWUUkqlUnRQQCmlsiv6PE2p9AovAKWUUkrlUXQIFk0afZuLbsuUUkoppVQqRQcFlFIqu6LP 05RKr/ACUEoppVQeRYdg0aTRt7notkwppZRSSqVSdFBAKaWyK/o8Tan0hm7lF/B+YTsyL7hYWIff 674MNbpjFxZi3pZyrE2vQmpePaZ9fMn+3kNz8pGaV+/2OqWU0hEoOgSLJo2+zUW3ZUoppZRSKpWi gwJKKZVd0edpSqU3dCsvw4euIeSFdmReuIXndF9GnP/pj5n4T3/MDPhzjySexqMLToe0bA9MysHP p+XhoTn5+Pm0POHbaqR1WJteBVdKqs32ZcYuLLS/nppXL7zMlFIa0YoOwaJJo29z0W2ZUkoppZRK peiggFJKZVf0edqzh/HPC0oxK7UKb++tw+LUKrydWoE/LTiKHwsvWzBm4SdTczHa52tUGkO38ugI NOP+dhZvbr6MsQsL8eNJOX595j+/cAQ7jzcg61wTNmTV4B9fPKJbeR6ak4/kXRUoqTa7hYAKa9Or IibgTN5VoVkHBpqUUhoiRYdg0aTRt7notkwppZRSSqVSdFBAKaU+Hfsx/rD8OyzYeBFLUr/Dgo0n MGnaSvwoTN8v+jzt5qRTmHrIjJON91HTAk0rG/uw/9BV/I9JEpTXX+Py8ZJSr0YzEl5SvfdSJfY1 KvUqx4NxEpQ3RPU/0TDs2JfNQzhzuRWJ753D69lNWLzkmPhyahm6lRs/0PzpK7n467areO/La0je VYHle29g6ppi/P1zhz1+5n+bmIWV+ytxrOQuTpa3ouhaGy5UtmPBtitBl2felnK0dw94DDJdkX14 1gcm5TjVZ96WcnsQqw5kGWhSSqmOig7Bokmjb3PRbZlSSimllEql8KCCUko9+KPncrDuXC8qPIV2 Ne1I3fQl/iHE5RB9nlb7s1VNONKgvT00bejG2lWShmAu/jqzz3n/VrVj8Yoz+M2KOuypcg5vCzKL hJdXT0fHV2FPneeA2hFwtmOWBOV1M3QrN36g+fyKC/jgqxtYub8SHx+qwvrMGmzOqcW23HrM3XwZ j/210Gn5H/0pGx98dQPfXWvD+RvtKKk2o7yuAxW3ulDd1I1vL97B/zfreMDleGhOPtKLTG6BZXv3 AEqqzUgvMiG/rAW1zT1O7yfvqhDfAH3US6tHpqsMNCmlVEdFh2DRpNG3uei2TCmllFJKpVJ0YEEp pe4m418+u43iZv9Cu7LiMkwYG7ryiD5PW83Cg9vNKPM3yHRyEPu258s/XOunbbjqV32GkfapBOXV ydHxVdjnb0h99TYelqDMboZu5RfwfqFGEFlYh9/rvkz4/T8m5+CDr27g02+qsSmnFl98W4cvjzVg T/4t7D/diIwzTcg534y8S3exbM8NpHxt7ZVZfNOMy7UduN7QhSpTN+rv9sLU1oeWjn6YuwcwZ0NZ QOV4YFKO2/Cy+WUteGhOPh7wMATuM0vPITWvXvpA85ml5+x1Wpte5XE5BpqUUqqjokOwaNLo21x0 W6aUUkoppVIpPriglFJnf7HOFHBwV3nlOn7/m9CUR/R5elRsBv5xc7vmNrH2YizET+IyMCouF7/S 6M2ohJp7NucKr4c3H8vu83t/n8o+K7y8evizVXdwvCmAtt54D6/KONyu8AJEqE8tOYOt39Zhx9EG 7M6/hX2nGnHoOxOyzjXh24t3cLy0BafKW3Hm+j1cvNmOspoOXGvoxM3GbtTd6UFjax/umi1o7x5A d98Q+geHUWXq9hhCelI9x2R79wDmbSkPeB2yqg40520p97gcA01KKdVR0SFYNGn0bS66LVNKKaWU UqkUHVzI4v/cUInMokokThVfFkqj2j+XINelZ2ZFxS0sWfQl/u+x7+EHY5Lxf036GglZLW49OMuO fRuSeTVFn6dHxV3BDo0efJXXm/C4VrgVdx5rr2uEmg1teEWmMCyuFO9l38Dv37iI2bldjv3ZPICs 3Gr8aV6urVdpFn4yrxSJbsvYPptdi4ky1cuvuufjpezuEfS4vY99n2eJL7+rwgsQoW45XIu9J2/j YKEJmWebcOTiHbd5MUurzbha34nKxm7UNvfgdmsf7rRbcK9rAF29g7AMDGNw6D6G799He/cAxi4s DKgMP5+W5zbHpB51e2BSDpJ3VSC/rMXe+7O2uQfpRSafvTqnfXwJ+WUtyC9rsddn7MJCpObV28uq rOuZpec016F8Xt3ztLa5x/56flmLUzn8CTSVYXf9CTzXplfZv8dbODx2YSGSd1WgpNpsr5vyHd7m Jx27sNC+fmW5h+bkY216ldP+TC8y+T3P6QOTcjBvSznWplc5lUcpU/KuCo91eWhOvn1/q/dRal69 bm2KUsP7bhNOtQA1ZyrFlyVYRYdg0aTRt7notkwppZRSSqVSlxv+MWvx25UXsOFIDfYXNiKzyOEX G74QH5D4IQNNSmVwNd48PeA0tOiZY3n4hYflf/RmCb6tV4c97fjwz/qXS/R5Wrvn4gC2rbIFW5OK 8X7+PezOr0fsJOtnRq9qwUXJezY+fKhXI3Q1Y36858DO0/Csxw+dFl4f/8zCT96rxq7K4REMHSzf PrQrvAAR6tN/O4vUvHocvXQXBZdbnObFvFLXiRu3u1DT1INbLb1obregrbMfnb2D6Ot3hJjBzmeZ mlfvFFrpUa+xCwvd5tp0paTajIfm5Gt+Xt1jdNrHl/DQnHyncM0VraFk/SG9yORUZgVPgaU6qPO1 DfLLWuzr8xQCzttS7rVenuo2Kta552nyrgqf28hXCPvQnHy3YYe10Npnzyw957MeerUt3YzLxx/3 tiK3cgBXmiPgJCvELDy+x4wTV814P/mwz2XeS5LnaRvNH05Ngyi83IrEBZ7qIoEMNDX94V+B5aVA Qw/QrzqvdPUA164C/0t04CbaEGxzqRTdlimllFJKqVQGfbM/ZjvmZzYgs+gW9udex+qdl7B85yUs 31mGDUdqsGE9A01KqZ/GnkOW0zCyVzHOx2d+uua2Uy+3c1kHdC+X2PP0Fexo1Aq2zEiwLfPKySH7 61dOXrF9rhL7tAKx2rt4RoL/PaNii7Gx2qVszd1Y9qYfn32zwa0Xb031HTwlvE7etAWZFUOoHGGQ qXjxaIkE9XExdCs39hyaii98eAHZ55pRXteBiltdqG7qRsPdXjTds6C1ox8dPYPo7R/CwOAwhobv awZGa9OrRjRMrDp4DLR3p5auIV1794C9x6E65PP2nepAU+lxqKxnbXoVUvPq3cI3116Itc09qG3u cSuL8rrSe1BZPtyBpjpIbu8eQEm1Gal59faenWrUwauiOtBMLzLZ96OyjbTW46mnpFYgqd7e6UUm +/Z2DTTnbSl3+lxJtRnpRSbN7y+pNgs/1kbFZmBU3HmsvjqMmpb7uFLVjf2F97C78B52F5qRWzmA 3EwGmqNiMzAq0YQC+z/oPqx1Cyyz8HhmLyqUZa6b8GvRZbZpDTSHUHBB2bf3sP/ygLWszQPY8/kx 4WXUlIGmm78tANqH4ZUVogO3hcBHpUB1F3Bwg8DAT6f1/fCvwL8tB346W/v9/7Ic+Lf3RvZZBpqU UkoppTRYg73R/y9rK5BZVI91Kzfi70SHIUHIQJNSCVxzWxX2DGDXimQ/PrcVH15WBT5XruJ/6Vwu oefplLuaPS1rWrrw7ksZGBV7FmtvqELgIqWDlodAs2UAm1PE/+8Z9e5tt7kjz+UW+/35p3L7XTpe 9GLFuxLUS8PR86p0CTIVCzKLhNfJzdCtvAwfuoaQF9qReeEWntN9GfG+uvYSzlXcc5sXc2j4Pu5r 55gAPPfi8+VDc/Kd1hNs+R+YlOMUjHkKWdOLTPZltMJBdaCpBGFaPQPVYVp794BmmfScQ1OvQFP9 XSXVZs1hc117XP58Wp7Hein197Qeb9vogUk5TuGwt56zP5+W51QX9XDF7d0DmkPbuvb89Hf421Bq HR5gCJl7C23jmlNNXce7dwo1XcLMFqDs5BVptqc10OzDWpcfBqPn3bY+EdXQihckKKebDDSdnFys 6pE5CJSUAvGfWAOzf1sOxB8DStqBpaIDzQ2A8l/tmwgPNB884giQB3uAFYtV788GDrY5/u/UFwM/ 9PezDDQppZRSSqlOBnujf8qeRmQWlWKK6CAkSBloUirecQc7VcHNXbwX69/nfp/erbrfdhuzdS6X yHP0P+7q8hhsVTYO4ELDsH0ktQtXW/HqdNtnlXtiGmbuyhX+v2dUbAZGTSrGJ/a5Pi34JCmAzyY1 o0jZDteb7UPtyugL+YO6BJlW+7Fxqfg6uRm6lUdXoKn49N/OYltuvdcQ01sY5q+uwVqw5XbtWelt WXWo6RpyuQaa3nqOqtfjaThUBVkCTfV73uo27eNLHsvkGmh6CwrVvUG9bev0IlNAvXy9rVetOlT1 Z9uF2oQzzsMcUM+OnleLDLdQ87B7mHmxFmMkmszaU6A5KjYDzxwdkOfpLlcZaGqGhIPtQIJe4RgD Ta8ebHf614Lbxar3s4FB9ZvDzmGy188y0KSUUkoppToZ7I1+a6B5Fa//wd/PLMEv3irAqqxaHCxq tA1VewWJb6116+H5d3H78JevbmDPyVvWOTkL67Fj/3d40uW7HGHkEvz3v13C9lONyCwswWQf69qT 9R3Gaq7jAjbk1iO9qBGZp2qxZWcO/nuM+LCHUqPrHGia8GaIP+evIs/R2vNnutjYjtedAr1jmH9u yOPyMk0PNnp7B1yH0PVPRw/UA9vlmbZL07jzWFaqT6hZeakWPxNdHy1Dt/LoDDTVPrP0HJJ3VSA1 rx7pRSak5tXb50wMdt3eArORqAx72t494DMY+/m0PPt3u86v6BqyeVuP63ybWttPQYZAUx3u+aqb +jtde1eq6+UrjPa2DYIZctjf7x8Vm+HUS3MkQyPrqTXQ7Mbi6X4sbwuYTmWfxej4cqwt7rfNuWkd rnb7do1ennH5eOmQGSfqlK7593GlqhNrV2kPczo6vhwpZ3tR3Gh7wqd5CMVXmzBBa53KU0zNQzhT 3ISX3CadPobf772n+u5hlFV248MgnoQZndSAI+pQs2nYOcwsbcDjEoWZo2K9B5qjPjejpgXY97n7 PihrUp4Y60dmdjke1KrXpDNIzO9GobIvWoZRVtmJjRvd24KjHFl4cE0TMqts+6V5CGcut2L+PJf9 5zHQzMKDa25j/9VB27a3tak1+dL0inUzyBBrvZIQDgOb/Awz40odYdqKecBXJmsPz8E61XKLga8a ALPSAX4QaGgA5i9zWd8867yd1R2OXqKDA0B1JfBb1XCq33iaerjeeX0P7gFK2oBeWw/GfgtQch54 WI+hWXXa5lr1MZU63vvhEfdAc4WXbaH+LANNSimllFKql8He6P/J4lLsK2pEevY5PBW3xOfy/7S4 FHuLbmF/ThkSVx7G1LVnsfZIAzKLarFy8WrVsl8g8XAjMk/dxNrPCzB16WH8JfUG9hY1Ij37FP6n ap1KGLlwxTmkFTVaA0tVr9F/WngROwobkXmqGhtSret6fcMFrM0ptoeeyjqWbCjF3lM3sWrDMUxd +R1WHWlAZlEj9u7+Bj+RIPCh1Mj+dOtdVXjTiXWz/flcMt48Pez4XHUVntW5XCLP0X4Fmjea8Jht +dHx5Vhb6j08Y6ApQD1CzQYzEvy5/y7C0K08+gLNh+bkI3lXBfLLWlBSbUZtc499TsJgemNq6ToP YzDrUgeU/oaj6gBU/XogPT19BZayBZrq8vgz/Ko/6/G1vdUhqnrZBybl2F93DZX9aaf+7qNRsRlY m15lX16PMD4Y//FzM660AJXX72oEgi4qgWZ+E/Y1DOPC5VakpFZhcfY9HK27j5qW+yhwmXPT+o97 GIXFd5CSWoW3D7XiRIO1d+Nql4DtZ+vbUNQM1DQNIDf/Nt5OrcLi7FZkVrRhln25Y0g4M4ia5iGc PNuExalVSMntRGGT6z+GXMwqGnT6bqWc6vBuJLqFmhKHmY59oB1o/suBbucemtMrsa8BqGzsw/7s Orydehsbiy2oaAHKzlQ6P0X0lxprj1XVvnBqC9nnnQJGpRzbss0os+/jOqwt7EFxs0ab8BBo/uxz M8pa7uNKhRlr91bh7UN3kFk5jJqWQeyTdT7QYAKs2cAlW/DXW+08rKm/geYlRwdye7j4w83ATYv1 pcEB4F4P0KUkdBbnIVLt6xoGzD3APYtjdYNNwIO25XbdAe71OoK+3l7reu9VOtY1+QzQ5fK+EpJ2 1TvWJUOgySFnKaWUUkqp7AZ/s381nvy8wtrbsrAGm1KP4N8f9xBsTj6BDYWN+GLLl3hA/XrMdiw8 3IjMkxfxtP31L/DG58fwy0fV61iC322tRmZRPZYmOl63hpE38cXhGny8chv+T3Vvyj/kYV1hIzJP lGKKl16k1nVoLBezG0m5jcgsuoIZ48UHPpQa2nernOaLPJd1wPdnYk9i/21VD7ZzZ/BTncsl8hzt bchZ90DTeT5NT3LIWUEGE2o2mDHf1313kYZu5RfwfqFGEFlYh9/rvoxYH5iU4xT6aHH/PjA0fB8H ChvxHwtOB/2d6hDP0xyUI1mXv3N6qocsVYd1vnpdqlUHe1rfK1ugqZ73M7+sBelFJq+qe1Cqg0Bf 9VbrqVdooKGkp+1aUm32WQ+55tE8hudybUOmNg/gaH41fvuihxOsffz2IRz40qU33KQybKsGapo7 8deXHK8/tu8OFi847LSe0Sl3ca4FuHLyiuP16bXIbPb9tMrDB7pR2dKHDcku60xqxin1Ol+qRWYL UHOuyrmccfl4UIenYVxDTVnDzFGxXgLNuPP45AZQ03gPr8ZlYFTsaSy7fB81N+64/JDIwuOH+1DT MoQd65TXbMs6zSWqrLcQKZfvw3VcePtTaY0dSHT5J/7jVS041wJUXqzBP7q2N3Wg+WYDcpuBU7nF +LFmXdrwigTb3M1gAqzNwB3b+aIsz//PqQNNWIAvNjkHbkoPwtuXgb9XhXTf2IZKVYenceeBs8dV y70GPHzaEVw6DS3rbchZ5b1hIHub4/UfbgZu28K/M+nyBJqjXgN++FfrHKU/9dB79L8sB/7tvZF9 loEmpZRSSikNVr1u+P/Ta8fwga03Y2ZhDT7ZsA+/cBmm9bHPq5FZWIopGsO3/r8fX0dm0U0snOHj uxaXIrOoESsXO15Twsh9Ow+5DVtrfa8eHyz03ntUWceWtZ+5vRez6aZ/ZaOUBukBbLqpCnGaO7Du zWQvy6/Fm6f7VcHPML7ZvFr3cgk9T6fcdQp5Na1sxuOxGRgVex6fVPoKxySZNup9EwqanMt2LrfY 788/ldvvXK+mPnz0vgT18uVIQk2te6eyKbwAEe5Dc/LtYZkWw/fvY3DoPiwDw+juG0J79wBaOvpx 9NJdTE45P+LvVffQA4K7aagevtZbcKhWHeCqhzs1cqDpK7T2hnobqeuVvKvCZ/tSUAea/m4bLdXB bKAE+l2h8mdL6rCrUhnCdQBZWkOMKgHT1dt4WGMdylNHvocKsA0roAqqrGHXEHau9/bZYmysBirP VGoMLVqAZZdVPwKUQLO0LmRjk4+eV4Xtly04UVgl1ZyZrroHmofxzwuu2oawUPWqXXoH51ruY9/n GvvgjQbktgBFh8+rlvXyY8X2/sWjJS7lAI4f0noAJRfvXgJqWjowX9mWGoHmU7n9qGk2I0Fje1t7 mwb4RFi4DCbAOuI4X1w6MrJA8+oJl6AtHegFgB7gNdcQThlgYABY4O07ZgNlWuXyEmguqra+3n7d fX1rblnf670pV6ApnaLbMqWUUkoplUp9b/zb5se0BZvp2UX4D3sPy08wJ0MZDtaz6qDyB2OW4r8l fIO/fH4Jy/ffwM6jyrybjfhiwxf25ZQw0vmz7+EHY1ZgxgH3+TS1VHp5aoWWntdPKdXbX2y9a5v2 yaapHZv+9hl+5Lrs2C+xpKjPedmbVXj2N/qXSex5+gp2NPoKve6j6MIdbLxgcd4eWkrzIL/1Hq1z cNeNZW/68VlbZwWnz1bfwVPC6+Tbn8XnY3RAoabEo8mpFV6ACNZbmKkEmX39w+jsHcS9rgHcabeg sbUPdXd6UGXqxvWGLuw/3Yg/Jo9sLGn1dwc6h6LaQAI2xfQik/0zP5+WZ3/dyIGmum4l1Wbkl7X4 rd6Bpl49NGubewKqh95DJwenbW5CW7Dp1uXfFjCpQyonVXNsql//cUIpZh26g92FnThRM2Cfm9Ex pIItzGpuVw0tq6EtVPP+j0IZs902NG3LfRRfacXiFaece/RFkR7H628eQFZ2mT3wtQaCPravLVy0 LqvuselqBfY0AzWXG/AvTuXw/CSZW/DqFmjaQmsfZQx2SOGQGEyAdcAWPmLkgeamhc7vTb6s+W/W jRWqz/x0E/BFKXDuFtCsHp7WtVxeAs3sTj++tD6AbcNAk1JKKaWURrmhCSVW48mtN5DuNPekbU7M Y2WYu/QwpnrwiUm2dfzhEJbm3kJmUSMOnriJDXsvYfnnBZi6rcJDoFmJxKmu5bB95+HvnObc1NLz OhhoUhpet2J5ybDLvZphXK1sw4Hc61iy5yb2nDOjzOR+P6dgX2pIyiT6PO3PPJoVNb04UeO63dyV af7Mhw/1upfRx9Cqo+OrsE9jGi/tzg+S+VINMpptU2z5GWq6Td8lq8ILEKE+MCnHLcxUhpUdGBxG b/8QOnoG0dbZj+Z2C2639qG2uQc3G7txraETl2s7UHzTjHMV91B4tQ17T97GvwY4P6F62Fd/gjpv dVHwdz5OZRhS1++VNdD0NOent2UBz3NfBtNTUY9AcyT7TOuz/s6ZKrfH8NxR61NSZUUVbkOAevzn 6fb+Mbx60vZ0UdMgCi+bsbvwDlJSW3DUKdC0jRGvmgTb2/ovnrPOr6ltGf5VWT4uHy9ld+KCLUCt rOvB9u2FGr07ja3S+7Xgwj3sLrxn2wdX3YYWVgLH/emetm0V3l55SrWs9rycozzsU1+f8R1o2tZZ a8aHHvd/FSb9Rfw2dzOYAGstcNt2ftHq2ehPoLnC5b0Vyr+6AaC8BjjnwanK8nWO4WUxaJ338loN oEwh6W+gqYxd0Nvu+TvPFTHQZKBJKaWUUkr9NXShxGq8fqgRmUWlmDLmPfxgzGbMz/avt+QPxizB xJ31yCyqxLuvL3V+zzbkrH+Bpu07nebm1JaBJqUSOXY/1l/xHc65WlnTg8KKW3gzTt/yiD5Pj4q7 gh0aIZ7d2hY8F5eBUXFl2FbrZbmGNrwi0whxcaV4L/sGfv/GRczO7UKx0uuyeQBZudX407xc2z3Y LPxkXikS3ZaxfTa7FhNlqpcn7VOxDeN4ph+hZmMH5usw7VlYDN3KjT2HprqHohJk9g9ah5U124aV bbpnQcPdXtQ09eDG7S5cre9EabUZF2+248z1ezh9pRUnylqQd+kucs4344UPLwRUBtdhZ4MJ2ZRw tr17wKnHpZbqkC2/rMXpPVkDTU+9Ln1tU/WyP5+WZ3+9pNo84m2tR6Cp3meA8xydgbSbYOdflcdj WFyq7vGY4TvQXNeGKy1AQWYRRsVmYPT6e7jSojHfoTLkrD3sKsLq6/A9bEKiCQUtQGWRf72e7cbl 4497W3G07j5qWu4j90AEPPWjo77DR6u/zuxDTct97Nnse53WZb310LQNqXGp1h6I+yrHKyeHUNPS h9WJzu3NEWja2omvnrwyGmSIldttO8FYgAV+zsfoLdB87brtjU5gso/12IenHQayv3Seh1MJKP0N NI/Znm25czkMgZ/o4JGBJqWUUkopDYOhDCWm7FEHmu/h6R31yCyqQdIcX5/13LPSOtemv4Gm8p3V WBTv/TsZaFIqmb/ZhrdPdKHCZ4jZgk2pF7Hzmur1epOuoabo8/So2AyMXteGMk/bobkLi+OzMDq+ DpmuQ7HaHcSOdXLPw+hPT1QZe5r6rVMw7TvUjKg6hm7lZfjQNYS80I7MC7fwnO7LhFdlDkL1/Jhd tmFl75qtw8rW3+1FlakbFbe6UF7XgZJqM87faEfRtTacLG/F8dIWfHvxDrLPNSO9yIQdRxvwn184 EnBZ1AGip2DQH9W9PX2tQx3mugaNogNN14BVUT3/pbdyuW5P1/BT6Znqq0z+1juYQFNdp0ADVvX+ DrSHp6wmnNEONNUhlVrrhM6OIUU9BljK0JZA/KcAACAASURBVLGq3nvWMKsfG5d6K5MtJKu9i2dG UqfpVTjQCNRcN+HXEmzfcOlvoKkE0h6HFNZY1tccmur3lR82mbtyNT5jG3tfvW815tC0thNJJkAP xCBDrP844+gh2WUCfutHqOkt0PznAsd7X63ycz1mIE79niq49BRoZm92XtemJtsbbcB/MNBkoEkp pZRSSoM2uBv9X+DNnRfwwstL3d77u7gjWH2yEZmZBfgX5bXEi9hb1Ij07O8QE+O6fA7mr9xsX2/i 4UZknizGRPVyf8jCyhOe5tDUDiN/EH8WaW7zebrLQJNSOf2HlzKwJOsuTlT328PNytt9KCy5hXVr v8Q/jHkPPxizFStdpxjSMdQUfZ62moUHt5s9h5peHcS+7fnyjzj3aRuu+lWfYaR9KkF5R+DoeVXY dXUAF2oGcKKwBv/xXAZGaYWajWYkvCS+vH4bupUbN9Csbuq2Dyvb2WsdVvaObVjZujs9KL5pxpfH GvDGZ2VYc6gK5yru4btrbSi43IJjJXdx5OIdZJ1rwqHvTNh3qhG7829h5jo/bsp7UD1EqhJuTfv4 kmZPywcm5WDswkKkF5mcArkHJuU4rUcrYHxgUo5TmKkVHooINF17VWrNJ6oOPWubezS3zbwt5W7D CLsGmupemkq5PfVoVba16/t6BZqu+6y9e8DjHJeu9XDdZulFJp/1CKQXaGg8ixWFrZi94LDbe6Pj q63h39XbeFh53d61vh9pnzpPaDw6qQkFzVpDjA5h53r1E0TK3JYuQ8zaAjC3eTudzMIrJ63zYhZk n3f5R56FB7ebkKT07nspHw+6racEm2vhNK9jNOh3oKk8adTch7VJLk99xeVjfmadKgi2Df+quWwh Ui7fd5sM3P6kVnUbpjsNuZCFx7OtQxw7Pb2kEWgqT7RVXm/C4y7DUYyOr8LqPUXCt7emwYZYs4Fv 2h3nl8Ee4ORpIHY58G82F54GStqBpX4EmqMWAleHbevqBJKXqd6bBywsBU5ku6xnGPhimWOZbFV5 nAJN1RC59Rede3T+8wlHMHv3JvCwKpj9+w+Bb5oc5WegyUCTUkoppZT6Nrgb/bbgsegW9h+7gbU7 L2H5zktYvr8S+wsbkVl4A4kzlqiWX40pu2uQXtSI9GMVWL7hGKYuLcAi2/JOIeV66xycB4+UIXHl Yby+4RI2HWvAhoxA5tB8Dz8YswQx6ytwsKgR6ScrsfbzAkxdehivb7iAtTnF9uFvGWhSGuHGncT+ +tCEmqLP02p/tqoJR7wNP+s2zGw31q46Jrzc/mgdzU3V+7aqHYtXnMFvVtRhT9V9p/eU0f0Mo0uo GVG9M2MzGGiOxJdXF8PcPYBW27Cyt1qsw8pWNnbjbMU9/FYjUPvTB+eQmlePb8404WChCXtP3sau E7eQmlePrd/W4b/OHPnB/tCcfKeg0ZX8shaUVJvdwjrXME0dtKmDrrXpVW6fb+8e0AwORQSao2Ld Q9327gG3z6h7Vyp1S95VYa8fYA2D1ctpDU/r2osTsIak6UUmpObVu21v1+2gV6DpaZ8py6bm1TuV wzXsnPbxJbfPeauHr7KGXlso1XIfV+p6kVlom2OxuA9XmjXCKlvAVHTOjIKmARwtbMLi1Cqk5Hdb 56l0W95kDTmbLNifXYe39zZh95UBVFzuxnHXQDM2C49n9qKiBahs7ENmrnWezMXZrcisaHMMMTq9 EntsQ8cWX7mHtXur8PahO8isGEKl6/yLzUM4WXwHKalV1u++Omh9qunzyPghoJd+B5qxGfjZ5+3W 8eybVfs3txMnG++7zXE6OsmE401ATfMQTp61Lrs4+x5ya4Y1t7O1HBYcONOHiroe7M6uw9upt7H9 8oB1v7uGlBqB5qjYY0goGkBli3VOVGUdG21tVtofDHoEWfOAr+5onp6cUMJLr4Hma8CDR4Au1ed6 e61zY/bb/raHlNuBVmWhYcDcA/QOA131QKXrsjbtQ+QCGBwA+usd761wdGa3r++exXtZGWgy0KSU UkoppdoGe6P/gZczkbjzOrYfq0d6kbX35METN7FhZwGeilui8Zml+OWyS9hiX94ahq5auw+/cOq1 uRpPbriCHSdv2dZ5Ax/8bSP+LqA5NBWX4BdvFWBVVi0O2sqYfrIGW7761j6kLQNNSg2gRqhZsC81 6PWKPk+7OekUph4yW++1eRqKt7EP+w9dxf/w2OlDQuPy8ZJSL9ceii9VYl+jUq9yPBgJc2YGXH9b qNnQjlmR1DszNoOB5kj935/NxppDVahu6saN2124UteJkmozHvure8indsybBZi3pRzb8+qx5XAt NmTVYEYQvTPVTvv4klto6Q2tkPChOfk+11FSbfbYW09UoKnugangOp/mz6fluQWfrvV6YFKOX/Nt BrKtQxloKst4q5eCVu9Nfz/rT1nD4Y8X3MDawm4U1g2h0vZPs6LBgtzC23gp3qXnnWoOzZ+takJm le0zzUM4c7kV8+e5j+XutFzTIE4UVmFMnOscmopZeHDNbey/OugYhqJxACfO1jgvN+kMEgt7Uaz8 428eQvFVM1LWqIZfeKkEy876WCZKDCTQtLaJauy6OmANte37QKM9xGZgdHw5Uly285nLrUjU6PXr KMcxPJfdiTO2z1Q29iM3vwpjXH/MaAaaGRgVexj/68t7OGFvs9ZAXuofRDoGWr85CJy7C5hVp8vB AaD5LvBNDvD3fgaao14D/v5T4ORda0AJwBowdlh7f6p7Tz6cCVQrp7VBoLrSOuyt5hyarwE//Ag4 264aJrfS+f0/HAequxzvK+X/Yodzj04Gmgw0KaWUUkqpd4UHEJRSqqdOoWY/vvwgOeh1ij5Pe/Yw /nlBKWalVuHtvXVYnFqFt1Mr8KcFR/Fj4WULxiz8ZGqu28h67q8Z0cP4cSSF0IqhW/kFvF+oEUQW 1uH3ui8jzv/2+jFkn2vG+RvtmLv5st+f++kruZiy8iKW7qnA/zP9qG7leWBSDuZtKUd+WYtb4Nbe PYCSajNS8+q9Dh/6wKQcJO+qcFpHe/eAvUejp5BvVKw16Msva0F+WYvH4U8Vxy4stC+rFViq3/e1 rlGx1nBubXqVvWehp7lA1T0ylbqp66WsI7+sxWtdR8VaA9z0IpNb78/27gF7vVzXoa6Xr9D359Py 7Mv6ChTnbSm396x0LYu3oXF9fVb5bm+fl1JVoCm8LDTiDDRYNZSiQ7Bo0ujbXHRbppRSSimlUik8 fKCUUr0d+yUSUi9i9l8/w490WJ/o8zSl0iu8AAbxyaQi/OhP2cLLoeUDk3J8BnO+Pi+6DqHcNjJt a1nK8vNpedLUY8Qy0KRByECThjXwE12OUNePUkoppZTSWAaalFLqS9HnaUqlV3gBKKU0FDLQpEHI QJOGNfATXY5Q149SSimllNJYBpqUUupL0edpSqVXeAEopTQUMtCkQchAk4Y18BNdjlDXj1JKKaWU 0lgGmpRS6kvR52lKpVd4ASilNBQy0KRByECThjXwE12OUNePUkoppZTSWAaalFLqS9HnaUqlV3gB KKWUUiqPokOwaNLo21x0W6aUUkoppVIpOiiglFLZFX2eplR6hReAUkoppfIoOgSLJo2+zUW3ZUop pZRSKpWigwJKKZVd0edpSqVXeAEopZRSKo+iQ7Bo0ujbXHRbppRSSimlUik6KKCUUtkVfZ6mVHqF F4BSSiml8ig6BIsmjb7NRbdlSimllFIqlaKDAkoplV3R52lKpVd4ASillFIqjzMGxAdh0aKyzUWX I9T1o5RSSimlNJaBJqWU+lL0eZpS6RVeAEoppZTK4zSz+CAsWlS2uehyhMJpZvFtmVJKKaWUSuX3 Y1KEhwWUUiqr349JEX6eplR6hReAUkoppfI4uVx8GBYtKttcdDlC4fPXxbdlSimllFIqld97bJPw wIBSSmX1e49tEn6eplR6hReAUkoppXLJXprhUdneosuht39uwaincsS3Y0oppZRSKp3fj/lQeGhA KaWy+f2YD4WfnymNCIUXgFJKKaXyObmcwWaoVba16HLo4YwBa3uZXM4wk1JKKaWUevV7j23i8LOU UjrGOswse2ZSGoDCC0AppZRSSimllFJKKaWUUkoppZ4UXgBKKaWUUkoppZRSSimllFJKKfWk8AJQ SimllFJKKaWUUkoppZRSSqknhReAUkoppZRSSimllFJKKaWUUko9KbwAlFJKKaWUUkoppZRSSiml UptOKQ1InY9B8ScBSimllFJKKaWUUkoppZRSGRQdAlFqdEd4bIo/OVBKKaWUUkoppZRSSimllIZb 0cEOpdSqH8crCCGEEEIIIYQQQgghhBBCooj79+97dXh42Iv3KaWaej5ufB1zvmCgSQghhBBCCCGE EEIIIYSQqMG/ENM9rBkaGqaU+qGvsHMkoSYDTUIIIYQQQgghhBBCCCGERAVaIebQ0BB6+yzo6OxB u7kLrW1mN1ta2ymlAah1HLWbu9DR2YPePguGhoY0w01PMNAkhBBCCCGEEEIIIYQQQojh0QozBweH YO7sQXdPH4aHfQ97SQgJjqGhYfT19aO9oxuDg/6Hmgw0CSGEEEIIIYQQQgghhBBiaDyGmbZQhRAS XoaH76Pd3OV3qMlAkxBCCCGEEEIIIYQQQgghhkV7rsz76Om1oKfXIrp4hEQtyjGozLHpLdRkoEkI IYQQQgghhBBCCCGEEEPiKcwcGhpGR2cPh5klRDAdnT0YGhr2GWoy0CSEEEIIIYQQQgghhBBCiOHw FmYODg6hrb1DdBEJiXra2jswODjkM9RkoEkIIYQQQgghhBBCCCGEEEPhLcwcGhrG4NAQWtraRReT kKinpa0dg0ND9mPTU6jJQJMQQgghhBBCCCGEEEIIIYbCV+/MgcFB3Gm5J7qYhEQ9d1ruYWBw0Gcv TQaahBBCCCGEEEIIIYQQQggxFL7CzP6BATTfbRNdTEKinua7begfGPAZajLQJBFJbX2j6CIQQqII nnPkwqj7w6j1ilS4P4geGLUdGbVehBgJHqeEEEKIe6CpHmq2f2AAlv4BNN9pFV1MQqKe5jutsPQP oH9gwGXoWQaaxADw4owQEk54zpELo+4Po9YrUuH+IHpg1HZk1HoRYiR4nBJCCCGugaZr78xB9Fn6 YWpuEV1MQqIeU3ML+iz96B8YdOulyUCTRDy8OCOEhBOec+TCqPvDqPWKVLg/iB4YtR0ZtV6EGAke p4QQQqIdb8PNKr0ze/ssaGxioEmIaBqbWtDbZ3H00vQw7CwDTRKR8OKMEBJOeM6RC6PuD6PWK1Lh /iB6YNR2ZNR6EWIkeJwSQgiJdrSGm3XtndnT24fbpruii0pI1HPbdBc9vX0eemky0CQRDi/OCCHh hOccuTDq/jBqvSIV7g+iB0ZtR0atFyFGgscpIYSQaMdT78yBwUF778zunj7cMt0RXdSoxGLph9nc hbZ7HWhtMwu3s6sHfX0W0ZslarlluoPunj57L03XYWeVUJOBJolIeHFGCAknPOfIhVH3h1HrFalw fxA9MGo7Mmq9CDESPE4JIYREO5qB5pB7oNnQyEAz3HR29QgPMD3Z0dktevNEJQ2NGoHmEANNYhB4 cUZIJHIeO5auw7sq1+TUii6UX/CcIxdG3R9GrVekwv1B9MCo7cio9SLESPA4JYQQEu1oBZrW4WYH bMPNWtDV3YuG282iixpV9PVZhIeWvmRPzfDTcLsZXd296Om12IadtYaaDDSJIeDFGSGRyBEkjp+B MSonb74sulB+wXOOXBh1fxi1XpEK9wfRA6O2I6PWS38sqDt7EKsTkxA7eTZiJiQgNj4Fqw9eRZfo ohHDw+OUEEJItONPoNnZ1YP6W02iixpVyNw7U7HtXofozRR1LNh6Ck1dPQw0iTHR8+KsZvdSxLiE LFo+MnEhpq/MQrmEdx/8rYPVeMzcXSusrKWb3wkozAp0eWmwnEBSnGq7x61HbtQ/3GMNNNX70bp/ 1yBDYKn8gTeE5ELP/dF1fi/mTJnl5/nT5f/ClBXYel6/fwpsZ3LB/UH0INh2ZDqZNuJzlLdz1/qT JqH1UhNMHfWoS8iw1OFg8lyPv9HHzd2HS+H6bWipwMFli/Bo7AjaTOxsPL8sB9ei5Xds6QHMmhyP mMnLkVYqujDBwf9jhBBCohklzFQHmsr8mf0Dg+iz9KO7pw+d3Qw0w8299k7hgaU/kvDyr2On4rE5 aTh5t88WaA7a59FkoEkiHj0vztSBmT/GTF6HDMmuDQOtg8hgMFoCzdYDK1xuYMUj4UCr6GIJhoEm 0IXynEPYecy1Z0YXyo/txWqXIXnd3Yatbp8NPTU52z0MEyym3Lrtjxv7MH0kN3edbvQmY/sNfYqj /43HIbS1tnt4rx93asrxXcEZHHPzEopr7qJf59IEQs2Nm9C+d+6tzUnazvw+TuQ67rWw1J3H/s0b Ncu5dHM2iupkSDzk2t5BtSM9zlEhOncZ9TysG5YKfLUgQRW8JmPR5kM4kLoNb0xzhLfjko8i9L8O LTiakhDcNh4/A+NSCjycl41FpF57aMFAkxBCSDTjGmgODQ07BZrK/JkdXT2oa5D0ATmDIjqoZKAp J/869s94+Hev4t+nb8cZs8Up0LT20mSgSSIYkYHmmPEzMPaDE1Jd0LOHpmy0Yt+CeGu5497CBFtP zZgFWWG4aSUzDDQdQbdzwO0egHs/hsMdjns6DkWVW6/9cWXrIl2CgRe2XtOlPPreeBxC04Vj2H/h jua7vddO44u0b7DFo1k4fK1Xx/IERunmRXhhc4nb/1rfbU6+dhbYcSLPce/OBXw0xUc5p2zDOcGl lG17B9OO9DpHheLcZdTzsF7UpCXb29ITyTlwzvpNyPvgLdv7i7E15GHsUbyjRzAeuw45oS6qBETm tYc2DDQJIYREM94CTUv/AANNgYgOKhloyokSaP7yd69i7NKj6OgfYKBJjEOoAk3Ni1ZLGyoKD+Kd l+MdF/Rxn+GobiUIATX7MF0p6/NbUSi6PCqiItC8sRev2Mo8NqUAR1Nmh/GmlcxwDs1IDTStuAfS kR5ojuSBFi31asf6/W+zhplfpH2DfREbaL6DMePj3UJNBpoiYaA5EoJpR6H4DaTXOkNyHo5LQWp5 F4Au3Dy4BuMEnId1o/QA5kydjxdXnoDm7bHWDLxhK/v0tNoQF0b9+8v9ITLvbcL7Z41IRF57eICB JiGEkGjGOdC8rxlodnX3orOrB7X1DDTDieigkoGmnEz5w1T88nev4pe/m45fPv4eNl1xDTTvM9CM PGwXlElHRBdEOGENNBVUIZXsF/StX6fY6zQ2pUB0cZyIhkDTUebZWHIcwPHPMDbC6hAMlu++dhq+ b9t3ShxxHjtchvZzHr5UXqJ9yFkr7oFmpA85G3igmYAXF63Du4kL8Yi0gaYjzNyS9g1SMwudhpP9 7rLJth9kGnLWhPO7tzm1mTdnKg+CuIaaHHJWJBxyNnBCEWharh3D+pXr8O7KNBy5ZoHWMWTXvoz3 dYazXmrU5Zm4oUT1zmWsnx7BgaZPCvHBs+EqOwPNQIjEaw9PMNAkhBASzTDQlBfRQSUDTTkpSUvB Y/ZA81X8Ye0ZkYGme6+cMePj8ejkJLydegpS3PuICOQLNE152zA9Phmrj9R5HILVvkyefv8chASa 6nYseQ9NR4/AGXjja9E9OpwxfqCp6sFibycFWBKnc+8VSwl2JyXhxaSDOO/prqt9mXRcCtt51oKM pHin831M0hH9hmgWVG/eEAK0A00xiAk0E5CYqfwfsyD3g9m6n5uCr5dzmKltEa7rUlo90fqd6Pyb UWv42VDD457oQSgCTffXvR9D3j8b/nqpUZfHeUqHM/jw+UgJNC2oy9+Lt2fOdvQOjp2NPyam4YSn C13Vg5Kh/60uLtAUda0YDKG89gj39tDjODVlfoqnJszCUynO87123TyD/Zs34o34+YidaJsXdkIC Yp9Pwhsr05B1vlmKB3Gc6UdXYxXOFZ7Ggf3fYsdu62+jbXu/xa6s0yi4UIn6NvXjXL2oPP0ttu3+ Ficq5KsNIYQQ7/gbaHZ0djPQDDOig0oGmnJSW38G62dOtweav3r1S5QKDzSnLFU9MZyC55+23vR+ JH5XGG+2RzKyBZrq+VjUN3odmDLX4QllGR3nXRERaJrSV9l72ck9F6L6BlAytteILo8zhg80Vb0x 1b1jHSGzrddmkKjnnIqZmeZ+DrWUYFP8LPsyYZtbqjULCa7zNMWuwD6dDhhR9WawIRfhDzQTkJiu vvloQcHqeRIGmv1oPG/QQHPDxbDfGOVxT/SAgaZ3nM/DCUhIPYPy8jPYmbwgoKGDxf1GNKHg40We yxq7CB+edLlGspRga4Ltd2HsUqSF/Le6qEBT3LViMITu2iP820OP4zQjyXn/W+pOYf38uX4dn49M WYH1+Z7D2/AxBHNtKXIOZHn5feQYcj/t21LUmocA3ESe8vqJm6IrQQghJEAYaMqL6KCSgaac1Nab cPrjREeg+eTH+EZ4oOkWxJmQ98FbGDM+HjN314anKBGNbIHmTWxPUPfEcr4wc7ogGz8DMQn7UKnT N4cq0Hxy0Vc4kJ7t7J40LE1chEftF5dzsey4+Msyj0g8fyZg9EBT3WvLJbhUB51OPRBG+E3HP3Oa W8op3HMJ9caMT8CSMLXZmrRkR/0/cdRZr/mhRNU72oecrcnZ7lSOHWfFljs0N9Jn4dnEdXh3UZLL vG2uYSZgynSe202eQBPgkLPytTPZhkBluSPnfBV9gebIFfMb0TnMjJm8HB8dsgay+zevQpz92mEB UgpsN0ScfquEq/e5un28hRkubd5xvp2BsTNXuhwPSzFhxIGmuGtFX3gbPtv79ghmiO3wbw99A81V 2PL1Kqcyjhk/w9YrcyGmL1qN6VPn44mn412Oz3jEpRwTNyrXkBk3T+e5Pez1xZ4j2JWej2+P5WOv qrem3V1HcORKOY4w0CSEkIiFgaa8iA4qGWjKSW29Cd99ssARaD6+GgflCzQBtGbgjfEzMCYxQ+Ie b7IgW6AJoLEQH850vzBzuyCbuRUFOnZ0CFWg6ZdTVmCrFE+aaiPz/JmAcw+7Jz8+43P5wo8dvaDC 1stwpKh7J7oNS6wadlaXHosWXPt6hXu41+Ue6iV8XRGm9noTW2ep66+q86y9Ot2kElNvvc45rQdW 2G58xiPhQKvG6/7o/Nlw4HqeTMwUW+5QD3XoCCx9h5nyBZqAOtTcd+GO5hK910776MmZhcPXenUq T+BY9437zX7fbU6+dhbYcSLPcc9yi29HDDT9N/yBpgm5KY5epDEzd1iHwrfU4aYtubEU78LLE2Zg 3IIMXLPALcyMSzmB8Nw689UL3l9HMIemoGtF76imhwjGkUwjEebtoW+g6ewj0z7FzsJqzYc/um6e wc5lzvON24+DcDLUivK8w06/bb4+ec1lWFmFfrQ1XMOJdA+9OBloEkJIxMFAU15EB5UMNOWktr4O Xy18zRFoPrcFBVIGmriM9dNnYMz0NJTaXukqz8KyhIUYN8H2A3hCAl5cluP2A9j643oNMmBCwebl 1ouAmbtwJcD1WBe+iv3LkuzLxjy9CG/vvoiuzDUYM95x8xYAoHrNdDINsybHY8z4Rdh0VbWulcmY qMwlMX4WxsV/ioOuX6xaT1d5FpLiE2w/+mdhXPwabHUdnki9HRsLsTVJKW88Hn1pBda7LR8mGk9g ycuqC7PYWXhEfUH28mfI1fkCVWigqbr4lBGZ588EABxe57jR6DPkUgVk4+PxzuEwlXGEqMNkX+qz byy4lLbUKVx5ZIJzqDczLYzzzp3bZn+KXwnTHe3xLXyky+ShgIh6R3ugaeUElj4/H69/6XiwwEiB 5pOrC52GlK1L34gkl1BcK8zU80a6vkOcWkPN/REbaC7S7LnEQDN8sNzi2xEDTWdjXv4MueVHkDgx dOdh/3AOM+3Tp1gq8NWCBIyZsBibim2hZl21tWda10WsswdZ4QwzAaGBJiDkWtE7AgNNIKzbIzSB ZgISdvvXi73r/F7MVB2vEz4+E8aHgofQcOZbx++avQUobvRn7Il+3Ll8GjsYaBJCSMTDQFNedA8f TUewbGk6bjLQjGhqy/bizQmOOTT//e0MNMkZaNp68Nh7aFqXjZn8PhZtPoQD6Yew/h3rBeO4ZOeJ 6JVAc+fXKY4bF/Zg1P/1oFG5MJ6FZxO3YWt6NrZ+koJnJ8TjhZnWi2zNQHN3Bt6wX3y8g/WlqnLF zsWfl6ZhZ3o2dipDDk1ch5xW9/XM25CGFybMxvNJ1uWt3229WHjnsPoDtu347g6snzkLT7yx0VrW le9bw9zYRdhUCjG4XpiF+AI1VIGmp2GF3l26GtOnzHKun47zAuqH3PNnAnCZY9F7MOwUHki5vdWo w1c/1LHHomu4p2zbsIaZAM59+pbtu1XD7aqG2p3w6QUdvy289eaQs9tdyrEfZwSWO1Rzt/l9PgrR jXT952wcQltru4f3ZBpy1p2aGzc9HMcccjZ8sNx6wEDTO/4GmuPm7rX2gARguZaBhImhOQ/7xoJL mxe5h5kAOgq2OA0zO3dzNk6XX8XpQ9tsD8Baw8wXPi4MY5gJiBtyVkWYrxV9IWbIWRVh2h6hCDQf fWU5FijbYpMfwXyj+iGEt/Dhd+G5OhlqKMZue5hZhOudvj7RhaoLjt9CWYeyGWgSQkiEw0BTXvQO NE+u+yvGjJ+P5G/vMNCMYLbOjbeGmb+bjl8+/hre2NuMARkDTVP6KowdPwOvpCo/EI9i08enXOZY MOGrxHi3gMb64/odTJ65CB8edR3uxN/1WHA0JUH7Rqbqx7dWoDl5+iK88HE+brrc8cjZuhUnXC5w TLbQ1WkeOdt6xox/Bx+dd16Jpe6gNSx1evJTuRh1H4JNWb8/Q3iGDJcLs1BeoIYq0PR+M8SEjKQE pwu6eemSDTwr+fyZVpRjTrnhMxezPospAgAAIABJREFUPs3F+fo2W5u2oLW+GFmfLncaemlcSoG0 w/wCAErTMFmp05TNOFpdixo38/GB/Ylwx0MQweMa7oU/zITlBJKU4WWdhttVDTsbtx65uhYqfPXW P2iKLNxvOAdxU1MHQncjXTvU9BZmyh1okmDg/iB6wEDTO9qBZgISN2+2/a6KxxPJOW7z7ynDuYY9 0Kw5gJm236djE/Y65vG2YTq5FS+4zjFoV0SYCTi3D/f/397bhPfPBkQYrxWDQa9jxCdh2B6hHHI2 kOuZ1sPr7L+jYpKP+v6ADlTmK0PHHsbRm36MONFcin3eRq5goEkIIREHA0150TXQvLATL9t+f/96 +nacZKAZsfxq7FRHoPn8ZuR3DsgVaFpaG3D+4DrtnosaWC8snH8wKz+uHWGob9zWY+stFrMgS3MO T+WCRivQDKiHlS3scLoosq1HPW+XGuvcgQuxrlh5xbYdtUIBSw7mjZ+BMe/miA19bEPhTkxMC+k8 KGICTahC6HA/De4fss+facdSgGWT3Z9K9mTM5I04KnWaqe6d6L1dqNub3j0Wr6VvxPSpSUhKD9ec mTIQnnoz2JCLkN9IV4WavsJMBprGhfuD6AEDTe+4n4eVBzctuLR5MV72EgCGLXhS4fitvRhbb2gv Y6k7hfWJiXg01lGnR2euwdb8OkG/zyQJNIGwXSsGQ1jbVYi3hx7HaevxLXj+aa3rtng8OnuXW6iv jQkZy97CIxMWIuV4eIbc6a25iK93Z2H3yZv+9bgfasKF7GzN4fi/2HMMp2vEDcNPCCFkZDDQlBf9 As1a7F44W/X75HXMTL3BQDNC+VdVoDl5Uyks/TIEmho+Mk1jbklLG0qOHcL6leswP2EhYifPtg/r ow4WlR6aHp8K9Gc9323Fk+Nn4IWt17TX4WUOTc8XOBa0lhZg5+aNeHdRMiY+P9dxQavupWpbj8e5 9Ny+WxlyViu0tL2nmovUyIgKNF3nSPTYbgQh/fyZahoL8VH8LM3zgtM5In6btDc8HKh6IXq5wQUA uLEXryj1c+rJGCmcx44RD+PnSWX4UnnhkLPOQ87uOCu23KEf6jABLy5ah3cXJfkMM+UMNL0NJ+uP ooacNc5Qoc6Eb5jcUONtmMagh2AMK5ExdLGn36iWa8ewfuU6vLsyDUeuWQCYcH73Nu3jwr6M93WG s15qXM/D45KO+N2DUUSgaf/OZzdD4kcHXZAo0IwARLSrUMEHcwghhEQzDDTlRa/A0fTtBvzB9R7N M2uRbmKgGYmoA81/f/YtxL2yDgcbRAeaU5aqbnocQlah6zCxgKV4n23i+Hg8OjkJb9iW/XzRPA+B pvaFld/r0Qos1XgJNDU/YynB9rnW4TRjnp6LFxOtNxJ2bluNJz0Emv5/t7e5SBlojhS/Llotbag4 mmZrU4qqeQKlIALmz3SjC+U5aViUsBBPqJ78jXl6LiYmfIL1OZFxk9eSt94+T6Sn3t4OWrFvQby9 DSXlRcrNXwXvvUBGpvw3yPQ657QeWGF7sCYeCQdaNV73R+fPhgPXG87K/yVR5Q733G2RFmj2Xjut 2cMgMLNw+Fp4eyME1p4ip535rlf4j+mRcQEfTfGx/Z2mSpCXcO6TUASawSBzoBkzM83P3l7unw1X 8FSTlmz7zhR8pdlETMhdmYTYqSuQJs1FGQPNQGCgSQghhBgDBpryok+geRar/qx9PfeHFSdgYqAZ cfzq6SQs374XC1+Zjl8+/ip+9fir+NUzq3GwXpIhZ7W5ia2zZmBM3Crsd3nCW2voV8+BZgDrCbiX pIfXbFSmLsaY8bMx76DLkELK/HoBBJrWC+Z4vHNYeYWBpkKoAs2AFLyta3YvDShImLm7VmBpCYls oj3QtGMfdtv6vzfSA80rWxcFGZ5Z1au3PgNNBppyw0BzJATTjvQ6R4Xi3GXU87BPVCNtTPgg37k3 qaUOB5Pn2tvW9LTa8JTJJ0fxjsd5PQMwdh1yRFclDDDQJIQQQowBA0150SPQvJq6DL/2+Lv1fXx2 gYFmpHG13oSOzjJ8NkMVaI5/Fb965iMcapA20PS8nDKUpn+BZgDruboLL4z3NI+lBbkfuH+vtyDS Y5mOf2btwaURaD75sdZgi0ovLvXTvww0FYQHmhNX4CvXoZLDTKDlFn9B7mU4tABcvfui30ORkXBw GV+vVPbPDhy55WGxW8fxiX34u8yIO09xyFnbkLNvWueKnfCmMkxwZA85ixv7MD3Ym7yxydjubZjp AOCQsxxyVnY45GzgBNWO9DhHhejcZdTzsG9akZOcYP/uR6alYHVqNnZu/gTTpzimUhi3IAOCLxVU WHA0JSG4bTx+BsalFETFHO0MNAkhhBBjwEBTXoIONKuyMP8Z779dH0s8iKsMNCOK2noTOjq70XXz G8yLUwWaj1tDzfRbMgeas/aiUvWqpTgNL9gudAMKNP1aj603Z+wirC92vkTz9L2+A02XOfQsJVg/ 0zbEpEagOSY2GVtdrnhNmWswbvwMjE06ohq+koGmgp4XZ/73dJyFcVOTsWhzLsoluPMYeT009Rqq NDqGu4oYlIc1NM65ztjOteNnQL7hmn0T7TeEPA05Kwo990fX+b2YM8X3fL5aPjJlBbae1+8fQrS3 M9ng/iB6EGw7Mp1MG/E5ytu5a/3J4G7a6Hl8BFNHPeoSMKopRrR+cz+RnAPpsn1LBQ4uW4RHRxIe x87G88tyJApoQ0zpAcyaHI+YycslGjZ4ZPD/GCGEkGiGgaa8BBdo3sGRFfP9+B07B+98c4eBZgRh DzS7e9Fbk4X5z6gCzcdn4PnPr8oYaCpPvMbjiTc2Ymt6NrZ+koJnJyRgesLCAALNwNZjDy5j5+LP K/fiQPohrF/6Pp6YMBfLUlYFFGi2Hl6HceNnIGby+1iWmo0DqdvwxrRZGJeQjIkeAs3XktZg3ISF eOMT23cn2S42J65BhtM1CANNBV6cRSIMNI2Hoxe7P8PzqYf40+4VLy8858iFUfeHUesVqXB/ED0w ajsyar38pwvlB7fhjfj5GDchHo9Ono8XE7dh59m6iPp9Q4wNj1NCCCHRDANNeQkq0Cw/gLlT5uH3 k/1w7i6cZ6AZMTgFmn0WWOqy8dYzSqCZgPeP9ckYaML29GgSxk2w3iB/9CXrU7eBzaEZ2HoAoKs8 C0nxCXhk/AyMGT8L4+LXYOtJU8BzaAIWXEv/FC9OtD5lHPN0IuZsLoTJ6xyazp8ZMyEBLybtRYHb 9QcDTQVenEUiHHLWeBRj5wfKvvkahb7u4FnOYJuyLz84hPNhKaM+8JwjF0bdH0atV6TC/UH0wKjt yKj1IsRI8DglhBASzTDQlBc95tAMhyS8uAWa/QMYaL+MjJ0H8E1RDXrDO4dm5FKTlhy64RG9BqPE G7w4IyKZ/eFujPrV6yFx9oe7RVePaMBzjlwYdX8YtV6RCvcH0QOjtiOj1osQI8HjlBBCSDTDQFNe RAeVDDTlRDPQHBzE4OAQhoaGMcxA0x9asW9BPMaMT8FX3kdSHBkMNEcML86ISEIVZioS+eA5Ry6M uj+MWq9IhfuD6IFR25FR60WIkeBxSgghJJphoCkvooNKBppywkAzaCyoS1+DceNnYGzSEYQiz2Sg OXJ4cUZEwh6a0QfPOXJh1P1h1HpFKtwfRA+M2o6MWi9CjASPU0IIIdEMA015ER1UMtCUEwaaAZCx LAETE1bj3U/24kB6Ng6kbsP8N+YiZvwMxExeh4xQXQcw0BwxvDgjhIQTnnPkwqj7w6j1ilS4P4ge GLUdGbVehBgJHqeEEEKiGQaa8iI6qGSgKScMNAOgMnMb3oifj3ETZmDM+BkYMz4ej05Owtubc1He FcIvZqA5YnhxRggJJzznyIVR94dR6xWpcH8QPTBqOzJqvQgxEjxOCSGERDMMNOVFdFDJQFNOGGgS Q8OLM0JIOOE5Ry6Muj+MWq9IhfuD6IFR25FR60WIkeBxSgghJJphoCkvooNKBppywkCTGBpenBFC wgnPOXJh1P1h1HpFKtwfRA+M2o6MWi9CjASPU0IIIdEMA015ER1UMtCUEwaaxNDw4owQEk54zpEL o+4Po9YrUuH+IHpg1HZk1HoRYiR4nBJCCIlmGGjKi+igkoGmnDDQJIaGF2eEkHDCc45cGHV/GLVe kQr3B9EDo7Yjo9aLECPB45QQQkg0w0BTXkQHlQw05YSBJjE0vDgjhIQTnnPkwqj7w6j1ilS4P4ge GLUdGbVehBgJHqeEEEKiGQaa8iI6qGSgKScMNImh4cUZISSc8JwjF0bdH0atV6TC/UH0wKjtyKj1 IsRI8DglhBASzTDQlJe2ex3Cw0oGmvLBQJMQQgghhBBCCCGEEEIIIVEFA015MZu7hIeVvjSbu0Rv pqiDgSYhhBBCCCGEEEJIhDL4619TSiNcQogYGGjKS1+fRXhg6cveXovozRR1MNAkhBBCCCGEEEII iVBEBzGU0uAlhIiBgabcyNxLs6OzG/fv3xe9iaIOBpqEEEIIIYQQQgghEYroIIZSGryEEDEw0JSf vj6LNMFm270OmM1d6OuzMMwUBANNQgghhBBCCCGEkAiFoQghkQmPXULEw0CTkMiCgSYhhBBCCCGE EEJIhMJQhJDIhMcuIeJhoElIZMFAkxBCCCGEEEIIISRCYShCSGTCY5cQ8TDQJCSyYKBJCCGEEEII IYQQEqEwFCEkMuGxS4h4GGgSElkw0CSEEEIIIYQQQgiJUBiKEBKZ8NglRDwMNAmJLBhoEkIIIYQQ QgghhEQoDEUIiUx47BIiHgaahEQWDDRJxFNb3yi6CMQAsB0RvWBbInrBtkT0gO1ILrg/iB6wHfmH UbeTVr3UociLs5Lx24l/wZjxM6T15JlSSumZUqdjV3RZKA3UKxW1uN101+v/LHNHF0zNrahtaJJG U3MrzB1d9jIy0CQksmCgSSIeo16okvDCdkT0gm2J6AXbEtEDtiO54P4gesB25B9G3U6+Ak3RYaW/ gSYhhD00SWTT2mbGlYpalF6t0ny/6U6b8PDSm0132gCEL9C0WPphNneh7V4HWtvMwu3s6kFfn2XE 9SGRw/DwMAYHBzEwMIh+CRwcHMLw8PCI68NAk0Q8Rr1QJeGF7YjoBdsS0Qu2JaIHbEdywf1B9IDt yD+Mup0YaBJiHBhoEiOg1VPT3NElPLD0R3NHV1gCzc6uHuEBpic7Orv1aAZEUgYHh4QHmN6CzZHA QJNEPEa9UCXhhe2I6AXbEtELtiWiB2xHcsH9QfSA7cg/jLqdGGgSYhwYaBIjMDg4hO/Olzu9Jtsw s96Gnw11oNnXZxEeWvqSPTWNyfDwsPDQ0pcj6anJQJNEPEa9UCXhhe2I6AXbEtELtiWiB2xHcsH9 QfSA7cg/jLqdGGgSYhwYaBKj4HpeFx1UBmKoA02Ze2cqtt3r0KspEImQuXem4sDAYMD1YqBJIh6j XqiS8MJ2RPSCbYnoBdsS0QO2I7ng/iB6wHbkH0bdTgw0CTEODDSJUWCg6Zl77Z3CA0t/JMZDljkz fRkoDDRJxKP3hWr+ygTbhVYClhXoumoiMUa94UEADPWhvb0DbeY+jGx09sBgWzIwRmhLNQcwM9Z6 MzFm7gHU6P8N4jBy3YKA5yS54P4gesB25B9G3U4MNAkxDgw0iVHQJdCsKMfpootevISSqsgLNEUH lQw0oxfRQSUDTUI8oPeFakaS40IrMVPXVROJMeoNj2hnyHQNRzLzsPug1f3Hr+F2iJOokLYlSx2K DqVh6dJ1eNfVlWnYf7YOss180FVegK2fREZZvWGYtlSahsnKDcXpaTDU7USZ6ybw2NWtHVnqUJST 7X48B+Dq1GxkhfvYl6zc3B8st1TtSKHrKvZ/sg5LUwsR+G06eQlqO1nqUHToEHYWVEj3e4WBJiHG gYEmMQrBBZr1OL7lA/wu1tf/jwX44CgDTQaaxF9EB5UMNAnxAANNogcMNI2ICUWHHQGUYvr50N6q C2VbOvfpWz5+4L+Fj86F7OsDpzULCR4vSiQrq1cM1JZkDv2CReK6iTx2dWlHrQVY9nK8Tjey4xG3 sgCtwZcqIsvN/cFyS9OOVBxNmW0r32wkZrYCjYXYmpSE2OfnY2LCRhy8Jluk5x/BbCfHeTseL2wu kSrUZKBJiHFgoEmMQlCB5qlUvOgzzJwB2QLNjs5uv7aN6KCSgWb0IjqoZKBJiAf0uKB3DDPrSQ4/ qyetx7fg2Qkz8MiUT5EhSY6o242hxkJsTVqER2NnYMz4WXgqgm8CRQ53celEPr466B44+W16Pr4t u6tLaUIZaKofuPCkVA9iqAMm2csKwLBtSTUUqyeVIVp9tbFHpm3B0TAkCMr/CZ9tPYC6hZWuZtRU N6PL9qcpcx2e8FHOUB0PerSj0s3v6Hwz+x2sD8O9bBnLzf3BcsvSjtQ41XH6Usyc6FLm2EVYXxx5 v2eD2U7O14dyhZoMNAkxDgw0iVEIJtC8kfqB43/EU3PwxKS5Hnwfa07IEWh2dHaj7V6HX9tGdFDJ QDN6ER1UMtAkxAN6XND7HRLU5GGN38NKFaC8y+dX64e34ewCGg4r9OV22t4T10gRaupyY8hSgGWT NZ7gn7AUaTc8f8x0/iBWL12Hd5duxNb8yBqGUwqaypEZTACl+G25LsOs6R5oWupQZ1ul+tiZ8Kbj uJ0xxeVcBcBUJ0FbUgeacYvwpsv5ZsdZ0QV0wahtyUewbL2Bbe3RKEto7nc5Aqhb2LAUYIktDBi3 IAPKMy1KqOnr2NUbvX8nqcuvVl0Xf5YJdzuSpdzh+t0aqLIc157+X8jSjmTZ3rr/1mg9gsQ4H+WO wFAzuCFnS7ApfpZqGziHmvdO78ViQddZegaav534F7w4KxmJSz5D4pLP8NuJf9G9vWtprEDzLi5m bUdRWLqMh4HrGcg6fQ2B314kI4GBJjEKwQSaR1YvcPyPSNyne2Cpd6AZSJgJMNAk4hAdVDLQJMQD Ye2h6c+NU5UxC7LCMxQW/BnOTp5ytx7+1LmnigShph7tqCYt2eM2HZui1cXXgrr0NRin3vYzt6HQ KBfD4cKoIZSNc5++hZiZW1HQ6HlIbNfXTSf/f/buLLiJM98fvu+4SL2VygU3byZ1at7U/KfOm5rK OwdfwJnMZAJx/n8ODBN8DgQIzsCYxKwTYGCcIWxDCLHZ4oQ1Y5aMCWCDAWOb1Sw2SyAgecEbNsYr 3hcsy2Dh7fteSC21pG6pJbXcLfn7qfrVTES79XTraVvqr57nScasyTqY0lXHU4BKCte+pOIITTVu xCuh/ItGOhyhWfoDZome3zXU3HJe+jhDJdCUa6da26hJj+1moKmgvPy90LIf6eV8B2M2CLeRqJPX IOFoivNozRALNQM+T42n8LHTa7cQc5OFULMJuTvXYIKPr70an7PUCjTnLNyIiqp6p/38M+Ws6v1d qsIn0OxHeU4SsgzqzM6hD/2ourYnzI5JvxhoUrhQP9Csw+30g/j0k1UeRmyKav4/sO7gTZSOQKDp S5gJMNAk7WgdVDLQHO06crB2RhzeikvV/w3hETaia2j6GGiO5A18VW+2jEC73abf0zjUVPsG48dH m2DJ24//I3tOpcJMa2g10pRM7Shbkz/FwqMPRr7RYuIQyhYkld70HjpdLZf+2UCp+zvpAXbN961/ WMNM68/M2K/xayMRaMr2N/YlN1qsoak0NA82v9qhmwDd/Sa3I9S0wCLKAhhoBpce281AM/D3oQw0 g/D3ofECVrlMMzvn4EMAgMV4ImRDzYDPk+RnvwBDTRX+PqkRaL4zfRl6zM/c9sNA0zedhoNIvVzo 52jG5yjPuI6Jn6QjYsYJRHx4GuM338HNoC7R3o+G3DuYu/wUxsw4gYjZp/CL+OtIL+932a4Cualf I7cmmG0hgIEmhQ+1A817/9qC3/v89+UTRG+7joogBZqt7V0+h5kAA03SjtZBZZgFmhewSuIXz4Rp qzA/MWtkp+kMFQw0ZY1ooKlkytn4NY4/uhoFmnJTpumm3bbpcf86b5Hz7wGnULMSp3cqaHdiCk7e DXxqTTX6Uc6WxfZjmRi3DX9fvtpxg2PpCdEIIZkw0yjqXyodlxIB36jTeuRdWIdQNTi01KWfeNi9 OMyMjIrF/JQaFdviB4mAyWN/C+W+9LQad24ZcP2WAdfvV6NLheYw0PSxHboJNAHPoaZDKAaaepm6 NVTbzUBTQXHKWa9U/fsgEWZGRsUicvZBCBM9hGqoGZxAMxayoaZc31X5c5YageaOfan2n21qacex U5dx7NRlxK3aqnp/l6rAA81W3E38Hptf3or4iASseXkXvl55Adnf3YI1ir+B7yISEG+rhMRy+09e iREe34t/rtxr/f+vpOGWyzM8+HKPfbsTJRJNMN1A5pGDMMje2y5C7OwTeOdYi8S/9aPoYBZe/fst XKl6DgDorSrGmuUnMeZvd/HYl1NxLscaiLrUS/My8f7BUjSILtWWczl4ddEVpBX2wALA0lGDQxtO I2LeNVx1uaQHytNw9MR56GB1mLDGQJPChbqB5i189Sc//8ZMTsS/ghBotnU89SvMBBhokna0DirD M9CcvUn0Rn8b5s+2rlExYcZe5Oj/8xG5sSD/+A7MiduBI/fkUmnHNkdV+hCs9g1fx/SztmlmfaXR DdWAb4qOYLs9To8rCjUtZRlYKnWDxa0Cn1pTjX5kuZ2MqTJtdARRHkZmut00GZkpQ8Mx0HxhNqHz qecyv5D+2UCp/Tup43ySopG8rmFm5PQknNN6+uIwCDQV96UgCEqgKZqiVWoq1pAONL0c28gz494e z6FmKAaaahWDqPA6LrY79PoRAPcwc/JSTLSvpRmHpemONxJuoeb03YF/Zm+8hm1L12L+N1dQK7cv +zbXfH6fFrxAMxaSoabc+xiVP2epEWhmXXLEd6s27Fa9j3urwAJNCx4kfofta+6iutf6iLnmLk68 txPxET/gin0zA1JeS8CetF63PTz48gSyWoT/vwfxEfuQ/lC8RQPOvpOA+Ig9SCuSbkVFzhYcySmW b+aPeZi2LBMR6+5LfNGtCLGzM/FlvvvPvDYjE4kyz+npuV6bcQGHhIvE3IX8jCv45ewTePNgje3B euxcfgIfZLqMxuy4j2kzTiLmnOsozTrkpa3HuULXx0lNDDQpXKgbaOZh81zhb8YX+PZHA256rGys /VDYfgsOqhxodnR2+x1mAsEPNJuaWkM20Gwy3HT/0vjNKscGcssCibfxtJ3Ufb7y+zJfVr+Ju80S jRT27eGeofwX4e+j1P/TE7DAw0YL+voYaNrYAs21F1wed9z4iTn8SN2npOATrxkl+a1dC/KT1+Et YZsFP0Dqi46+CsoN30Aw0PTK640hP0JNfdwYsiA/ZZNT+CSuCXN34+RRD9PMStw00cuUfLoWSCgZ AoGmkumJ3cPMHTgle2dwBHkJNFdlSm+jGZ/7Qxvyr13HcYk3rqkXC1H5PLDmaPH3LaQDTV3yHGqK p19noKk+PbabrwfbrZd+BHTgxOo4R7smr0FCXpNoLU3nQBMALMZUzLcHnsuRcDuwFpzb6Hj+iWsv uP/dbbyAz2bE2dvz2XmpvcgLbqAZC7+mnw2RQPMPc+Nx7NRlr/vZuO2QX6M6Awo0LTfw3djjuOF2 uyEfP7yegsv2x8tx4s0EfJfhvouSxEx78FmSaB2lueuIKHa05GKvp9GZuIfzB7fiWo18M0sOXsXu H+/indk5yHB7W16AmBknMDbJ9Tan9fGYc/L7lVR0C2/OyIHrod7ZfQYRy2/bRq3WIHHZCYz5+09w XjnV+rgj+HQw3dmL5DNX4P9tfPKGgSaFi+AFmkoCSl+3Vx5odj41BRRmAkEMNJtKcDbpH4hacyYE A8023L0ocd+luRiZEoHm1XLxRlW46nrPRnI723O4horl9+XDSwlNhps4evEmMj38TOlN6XtI9sDW NYAdIYGHjU9RVVSGsoaneM5AUy7QBGA5h+Vy/0b6ZsnFBtmpiFzCzKhYTNySq8p0mmrf8L3zgx/T tXLKWRXa+gX+KLOmpqXsHLaFwBRwAvOjO8g6cxpHjmUj6/AO+YDTdaSdbUpjLadSE57PXJyL5G/8 6EcjOFWuXdgHmoCnUFO3YSYQ/oGm3LcAxVPRBiCYgab4b933dx2P6yVI9LUdcsejD2acjHf+/S8V aoZKoOnXewwdTBU69S8u73VsU0O6TTnrZRs9vN/Q41S6vrbbY3HKWa/U+fsgXgYmHpuu2/7qWWrx 49EU7DpXCuc5dywoS/tK9F7kM+wK8I92ZcpG5y98iENNpzAzFpGTN+JQhW/7D36gGQufQ02NA813 pi/DnIUbnQLNf6acxZyFG522E/4969It2X0J09b2mJ/5fA0EFGjWX8TOMT/gisTb3c7088i2p3VK A81T2DUtAeuWid5AXE3D+te/xSa5QLM8Df86+APkV39vwf6dt1CCGiQuO4M1P7q1FDePXMf6cy7v NjvuY9qMLOx0G85Rj++nvISIl97DQan5aGUCzZKDmYhYdsv2RfJ+VGbewIpjD11GjD7EmgUnEXtR Yr91Z3E8+SAM/i0SSgow0KRwEY6BZld3T8BhJhCMQLMVhVkHEPs/n1iPOT4EA02loaJkUCnx83Lb ST3uU6BpDUWvllv/N9PQJrmVXKApboPczwaTKoFmQSFu3CnErfzHaOh8hj4GmlKhpfzozeJTezH/ w8W2DwgLMTHuW5x0W3DTgrKLB7HkT0tt4VkcfjdjLdafq7FvYf3W6WfYVWhB7fUULBH2OXkx/rB0 L065LnAktKA4C18sjcfEqbZfklOXYvqqg7jgtv0D7Jpv+7BieYhTiRsxxfYzb01fi7VnHrrd7LeU XcH2VY59T5j2KeZsuSyaLs12XmwfgDrSv/IwktWCjLVxiIzaguOiL9Va278Kv5ssassp1w+qgXEb TTd5DXYZze5hpsQ6Uv4K5hrc90F8AAAgAElEQVSaAZdGgabe2y13Q7rp8m7ZUNOX/fgjmMFBU6Z7 qOlpLUTNg4OOLCydHEgfGpmpcu1GRaAJSIaac+N9umZGHAPNgATz95KvgaHmv5d01j5fSf2Ndg01 t/g48kgptQO0QM6v5v3Iz99Jenu/oaQ9am2jJsXvVb38LdBtu30oPfQjIBcb/uhok+fPZ65hZiwm LD2ByoDbILHe8NoLaHILM62jR301MoFmLHwKNTUONMVBpithpGbcqq32x/6ZclZ2X3+YG2/fbuO2 Qz5dA4FNOfsAx15PwPr3MvFjg6ebCkoDzUyk79yH+DfO2gPKB1/uwa41p5AgE2ia7uzFdyfOo1Xu qTvuY/Fu67jIO7vPSI5+lNKSfhEvSa6h6U+g2Y/L20/hle3FHr9savkxD69LrKFpdQOZ33keiUqB YaBJ4SLcAs2nKoWZgLqBZt3tk/j8k79gvPjvaggGmtaRiwqmY5ULKm2jNO2PK90O8C3QLL9vb6d1 pKb0fSKPgaaCfw8WNQNNaxXhTnEdWkwWBppOKlIRExWL328RL15oQf7+NZgQtRBTlu5F8plsHNn/ DT6aEec2tWlh8hpMiIrDe4u+wa5j2Ug/fBCL5i3EjP2O784Jgebm/TswcepKzE9MRfqZ09i1ab11 2q/Ja7DP5f11Zbr1A9yEaWvw1/2n3bZ3nl5VCDT3Y9faT+1tObJ/B/57aiwio5Zig/jdYuEPmDU5 FhNmrMea/aeRfiYV21bF4y2nDzvOgSYsF7BqciwiF6a6f5C0hRETVmdByDMtxhTMmhyLt2ZvxBeH s5F+LAVrFn2KCVFxmLW/QNXRVG7rq0xd6BxmfnoC+So+IQPN0Gu3pxtRvoSaervBKM09hIqM0leg KV7T1O1mrp81ooFCEELJQAR3mlDp/uTtWtHMaAo0bduL105goBm+7fOV3N9oR4BggSVIA6sZaHr+ fcNAU5vXI5D3obpt9wi+T1Lr74P1s7PU7yQxuVkiHiB57V5cCrgpTbi0ZbWoHXF4a6o4zFyNDZf9 e3enaqDp2i8tBTj06VLR6yoONX3Yjx+CFWgKoaSh0BrENbW0453py/DO9GWy+7t+27oIpK+jNAML NAFLZS4O/mob4iO2IWFuJq4Vd0mce+WB5pU7p7ApIhln6wHr+pnJOHs1UzbQrLm2Fd9l3pBv37lr WHlN+P85GPO3uy7TvEr9UAmWxWYhMd+PNStdA01LK3IPnsfPl16H58unEfv/dgYx5zpl/r0MV4/G I9Pge5NIGQaaFC7CKdB82m1WLcwEVAo06+/h+3Wr8Rupv6shGGgqHrUYaKDZXOw+VawPgWbpTdF0 sbJtURBY+jjNrVrUDzRtdbcYhdVtMKm0vqav9BVoWmpxau1St0DRcnU3JkYtxvJTLtMYNp7D8j/G InLpCdtIxjtI+CAWkX/6Hs5rq5tRW+sYqmhfF+SPW3HSZVo+c95+TI1yDgNRcQLzJ8diwoIUtyDO UpaK+ZNjETn7IBwDkmyBZpT7WiCW28lu+7+1czkio+KRZHTet7m21tEG10ATFlzavBiRUeuQ7DL1 jnX05mKsFRaPsE0F+/u/Z8H5cJtw6u+LERm1EYeqoSq3UFP4kKxymAkEN9DU+9StYqE0Va63c7xk 3iLnvuMU1FTi9E5OOasqSy1+PJ2CTcJUjeKbLl6mfdNyCjg7DyHUi5Y63L9nwPVbCurHYhTXmzAY YHOCv+6hBQX71rj0pzXYXRzkp/UHA82AMNDUb/t8JW7fjAVKAgT1cMpZUbs55axuXg+PFapTzo5g u9X7+yB8cVjud5KHdbyFL9GuylDhy2SuoaatAggzAZUDTanXd/0G/B+nNjuHml03U7EuCJ+zAgk0 V23Yjeu389Fjfmb/WUPhQ1y/nW9fC1OwcdshvDN9GSqq6lFRVW8PN7Mu3UKP+RnmLNzoNErTddpa TxVooGnVi/KsTHz3q22Ij9iKf0zJxN0W8b/7EGhabuC7MVuRfA5A1xXsejMTJSX+B5pXk6451s3s uI9pMy7iSIfs5gA6kZFwAV/e93MB9qJbeHPGCUSI6v+Ky8Geu60evrzej6KDFxCb6WkbBprBxkCT wkW4BJrdJnXDTCDQQLMRt47sxPtTPPxdDcVAE6L1JT2N1AxoylnbWpuu61cqDhddR3fa1uSUWA/T a6DpIQwNpqAFmra6aShHuQrra/pK20Bz9ibRB4It+GBaHCKnxuMLpw8tHTixOk72jX/OlsWIjNqK UxbAHmh+sB+5Hm4MCYGm9HStHTi+Kla0T2H0kvwUitZ/X46E28IjQqDpPOWrlXvoag00l2Nznqe7 Wa6BJmC5vAu/dzsO2/n64y5csu3OGnDKrHFydTd+HxWL5WfUv5PmGmoGI8wEghto+nWzQU83530x gu3265vuTmtqukxtrJsbQxbkp2zyGGBmHZW5KQRIjozU5Ma8n31Bs0BBLoR6XomcM/LTgUpXHn5s CKw5wQ403UYxS/UlvWCgGRAGmvptn6+c22fGvT0jF2qqHaCpVboKokaw3Xw9wrjdIziyVN2/DxKh 5tpzqLV4CDPRhIy1wuhE0RdpA+ISagYYZgIjOeWsuLxMP6txoCmUeKSmMNVsZFQs5izcaH/8D3Pj naafraiqd1t7MzIq1h6O7tiXqvg8qRNoCizoLL6O5F9uRfzYo8i1LxDpQ6CJLpyfloBNa/KBq2lI WJMPeAg0W29+42HK2YdYs8A5XIyYcQrLrsm1vxMZ2y4i0d8wE5CYcvY52gxGxC5Kx6sJBWhx+4F+ FH1/EQs9hpkAp5wNPgaaFC4CCTQrHuTj5o8Ga+U/1jTQ7OjshqmnV9Vz43fIWH0dWz9e5P3vaogG mgBclvGRCDalgkCp0Z2SywHJBKXl96XvB7reAxJNNyuQmyp3tAaaQv1Y2gTTqAk0Xep3Cw7iulsA 6Ly2h3QJYZ3jw9hb83Zg17kidEi8O7MGmuIAUurfhX3W4NDSWET+cTdy5A7nfBImRMVifkqN7QFb oOk2UlT0b1E77G82helgI6fG46/7L6FAqtESgaY9HBVPO9uRgUVRsZj67X37VtbQ1/M5FE/JqyZL 2Tl8sTQec744p+sbdWKhGmheTxRuKizFF7net3czgu0WT3HqU8mGmoGv2ahGPxJGYEu1XRw2ua6p af83t5smI7wWpSBcppz1sr5haKx7aEHZmb2YP3uhta9MW2pfBzkyKtZtSm/Hv1unaJdbE3rEMNAM CANN/bbPV+7tG7lQkwGavtrN1yOM2x2ygSYgGWrOi5f9Ep51BiXHvzkvFxOIJuQe3oE5f/oKu/xY M9OVNoFmLDyGmjoPNDduO2R//A9z4xEZFYsd+1Ldnu/Yqcv2n6mosk6m6mm9TdcKKNDsrUW1e0IH WEqR9mYCEhKFN2C+BJpASeJexL9zEVfW7MXhq/AYaKI8Df/6Vxok3+oV3cI02/qZVv1I33QCrzk9 JrCGmRtuyE35qpDkGpoA7t3A6zMysOGe+EFrmDk3vcH70kN1Z3E8+SAMvt9rJIUYaFK4CCTQDDyg VHfKWbVDTY7QVMB+b8Vl5KTMfT3pqWXdp6CVGk2pbISmzGhMmWBytAaao3OEpjDlrKUTBUe34j3J aV1t2y78DulnsmXqKvLtQagZxae+tY72jIq1hoSHbzl1KOfA0p3zvwvrYXr44GH7oOMIBT39jHug CQDm4iysXbDY9kFnIf57barLSBupQFMIhhzTznakbYFrCGL98LwOX8qev2xcMHqc/0TXOOWse7vd bpLYpjLVTbtFU5x6P6dfyK6paSk7h22JKTh5tzbgdWDV6EfiLw9MjNuGvy8XfcvcPjW2lWSoaRS9 Tiodl1/CMdA8exNXPEw3e+G8PkOoyqObnAJLp5q+A6dqzfJrakbFInLqJqRUeH+eoGGgGRAGmvpt n6+k22fGyXjnazYYoSanONVXu/l6KKhQnXI2pANNQCrUdHqfKnpK+xIuQrkuJaMTQZ9y1vUzlFPJ hJo6DzSF8FK8JqYw7aygx/zMaV1NYR3NrEu3FH9WCCjQLMnEwd010v+UuBfxMcJUsL4FmriahnUR e5EQ+QOuWOA50MQ9nD8oPXKxKz3HbTRm/bHziFh2C8676sTN3RcQ67p+paUBlVKTiXkiF2iiADEz TiDye+H160dl+mVMOfjY5XNmJyrL3adYNN3Zi+QzV6Du5IskxkCTwkU4BZqDg0No71Av1FQjbAy7 NTQl2UJEift6Xu+tSG1nG4npdbpaD/uTHQzhcr9I2RqaHqbWDRKuoakq6TU0C5PXYEJUHGbtLxC9 ucrBZ5NjEbngB0i+j5RlRvG5FPx1nnVUy8QtufZ9egs0raHEGuwrBYAy7FsQ63mEpm3a1kVpQijo e6Bpb3XxJexaG2+9gT19N3LsJ0I60MRPBzE1Sph21jaaVDxiE8C5jXGi4wk/wQw0Ay69BJq+BlRa hwoumjKT8J5MqKkWtW8wfny0CZa8/Y51ddzOqadpvLT2ACkrPpW8oaWk3pr3HXJG8jsSSgJNL+GU PkMoTzMUiNddtuDet/Gyr4d6oyb8IepLDDR9xkBTv+3zlZJ2C6V2qKn23ze586vWNmrSY7v5egT+ PpTtDubfBwvyk9c5z/4g8f7UeVaSOMxKDs5sP4FSNdCUe309fs6SCDV1Hmiu2rDb/rh4zUxXwpqa kVGxaGppB+A8atNbBRRoWnKx95UUXHYbpWnBjUU73EZo7tzvup5EF67EnoDwDtkeaFpysTciAfHT rqAT8BJoAhU5W3Akx3UR+35kJFxxrJ8pKLqFN2ecx/4ax0OPj53Hf7oFi4DlyjWsvCj9nLLkAk3b 2prT0q2RpOXaNfzqS4kpaCvvYNn39S4P1iEvbT0yDXq4yR2+GGhSuAi3QHNgYBDtHU9VCTVVCTRt VXf7LL5Y9heMF/9dDZtAEwrXxpQguZ1EQCr1HBLkppZ1/Jvzz3sLNEtvyowWDTL1A80i3CmuQ4vJ okqQGRaBJvAA+xbEIXLyGuwyCm/rbCGd5HqUClgKkDQ/FpGTk3DO9pDwjVJHACl2H9tnxyLyg2QI b9utAae3NTTF/+5/oGlrNPL3fIbIqDh8dl54TCbQFPa3MBWV1ScwX+K4qlM2ejje0Kf2B3q/p0OV qAmrsxDMs+6YZlaubNPP+hhoBrvd/nAPNZNwTsVGqtGPhGtNqqRDJalQ8yBu6e3k653EN6eulks/ HlJTzoqv2w/2I9fShCOfSt8M9S1M11bIBJpK+gkDzVHbPl/5EmhGRqkbajJA01e7+XooKAaaXgV3 vW4LOgpzrTP5XJFewgUAmu6dwrZNSdh21OD9C0Aa0W7KWefPYwtSRKFmWo6PX9RWdly+BprCqErA OdB8Z/oy++Nxq7Y6BZzHTl12mn5WWDNTaj/eKrA1NPPxw2sJWPPLo7iU3wYzAFi6UJJ2FF+++gOu iNK6/A3fIn7s98gq7rK+Br21uLnhO3yx7K49SHzw5Slc6gWABpx9RxSAFp3Flog9SCuSaUZnDk4d PgiDePiiuQixcVfhtqysJR8fzDiB/33ctmZl0W1Ext9GYXUL6sRlMCJ2URYS3Z6zHt9PeQkRL72H g4/dm2K5kYvXZlxCmll4pB9dhUbELjqJiHlXrJ+bO4oQu+wqMipdnrOkGIl/P42Yc877HChPw9Hj Z1Ejc/ikDgaaFC7CMdDsHxhAmwqhppqBprVaUZh1ALH/84n1mMMu0BQFiQEFmpBeb9NroCkz3axd Fa667NNToCkVgI4UNQPNW/mP0dDVp2qQGSaBJmAxfo8ZUbGYsOAH+wfCypSNmBAVi4lrL7h1DPO9 FCRfEv6rCbW1ru8cO3B8VazTCEv7FDmzd+Gy02cBxzQ7TmtK2j7IuE+HC1jKUjF/ciwmLD0hGhXp W6DZVOs+raR16tjF2HBVeEQu0AQqD69DZNRGbPtmIyInf4UTrmFIxQnMnxwrParNbMCuQ7Kr04cE 1T/Q+zQdqnxtO5yLYrP3pwuEkhssqzKhbMrZEWy3v1xDTTVvYqnSjyx3sD0mzv11mPoVTnjYvXBD 6O+b9iL5ukbTzIaycA00bV9SiYyKReTk1fhk0zbMsa8bK/774Nt0x1pzmypRo2m6JQUSaNqmNdbr 9MWu5KaslJumUi9Theqlfb5ScjwzFrisXyeaXSQQnOJUX+3m66GgQnXK2RFst2p/HywPcWH/3oA+ 8/x9017suvhQl+9f9RFoxsI51AxcIIHmjn2pqKiqR4/5mf1nhbUyhRL+TVgT89ipy06jLzduOwRD 4UO8M32ZU+Dpup/gBZpduLjyKDJOXsC/Jn6LzyMSED9mBzZPPIHLla5nuRV3dx/BtrHbEB+RgDUv 78LuRIN9hGJJ4l7ERyQgPuIHXAFwf81h64jMkkwkRCTY/k1+lGbnnb04erkQ1ltx1uldI2accJle tgaJy2yPzziBNw/WAOdy7P/tXlJTx8oHmiUHM6X38+FpjN98B7m1/dYNbaM1pZ8z0yVErUBu6te4 VtWv7CUhvzHQpHARroGm5UU/Wtu7Ago11Q80bdVUgrNJmzF5XegFmk2Gm84hIyAdPgYaaEL40rko JPUWaMpNVeu6T1GAKR1o2oJRjcJMQKVAs6gMZSqskxnWgSZgwa2dK+E0dY2lAPvirFPHvjVvC7Yd zkb6sRSsWboSbzl9ILyAVVELMWXpN9h1LBvpZ1Kxbflqt2lsrYFmPJavXYO3ZqzHmv2nkX4mFV/Y 9uceXDqm3pkwbQ3+uv800s+cxq5NGzFlqlRQ6FugmbE2Fm/N3mhrRzaSv7GuGejcDvlAU7jpPWFy HH6/+ZrEByXR1EFT47Hom1Tn9ut0zROlgvsNZX1TPEIzjDRlfospU9Wf1lS1ftR4C8lr1+B3k2MR GbUQU5buxSm1F0QjF23Iv3Ydx91CSffHvVXqxUJUPg+sNer9TmrC8VUSAXlULCJnJ+OWqFs5T/0m rjgsStPXuAmPN4a1DjR96DNKQvNQCTR9LV0FCBq1z1fKvoBkxr09olDT5+UWpKnRj9zWywu45Jd+ UJMe283Xg+3WSz+yHpxKgZ3mf7+lBX6eAluGwbnUCzUDCTRdp4+VmiZW2KbH/MxrSGkofAgAMBQ+ 9Ol8BBZo6kkbDJlb3W/KhrR+VF3bg6ywOib9YqBJ4SJ4gWYcfv8/n+I9j7UMv7UPflA/0HzeZ0FL a6ffoWbQAk2VayRZRy0quIeiQqBpv28jjLi0BZZyz+8WgEpxCT3FM3WJS+v3B4GHjRb0qbROZpgH mgAsudgwPRaRkzfiUIXwWC2u7f8K06cvtP2CWoiJf9qIL06VwjGYrAoZiRu9bCNeQ7MJufu/wh+m WW8YT5i2CvMTz8lM8WVB7fVU/DXuU1tQIWyfJTGazbdAszJzL+b/aal9rZK3psdL7NdDoCmMQo1a jLVuc5uI25+CJV6fJ/SM5kBTTO/T7ekd+xGpRdW+1HgNG+a6hJrTN+GQ0W0eK+SnbHKavjgyKg5/ 3HJNd9PAeZrWW4/TXXv0vBI5Z+QCzTz86Lpkk4+C+XvJ/+nV5afgH03t85X34xHa3YTcwzswJ24H jrpd5/5RpR915OIL199Fflcc/piYOzLXug7bzdeD7dayH9XUNQW19Ebz9/eWAhz6VPwFVHW+bBpI oHns1GUA1rDy2KnL9nUwxSWedjbr0i3ZfYlHZ8at2urTtRA+gSaAgSbczzqEH0PqTawH5SdxJrcM vt9eJH8w0KRwoW6gWYdja5f49V5r/CeHcT0Igaa59zmaWzr8CjW1Dir1GGjSyAh2EDnKAk1tOQJN rVtCatD8g6pOMNAMDPsRqUX9abA7UXAlG0eOnUb6uTt45OFLKOZHd5B15jSOHMtGTmGnLqd/k5vW W8/TXXvyoqUO9+8ZcP2WqH4sRnG9CYMB7juov5f8mV49MQUn747QtNh6b5+vPB1PkNut3tSUtfjx XDaSvwlkOv5sZI30a6SzdvP1YLu17EcMNDXgFGrG4bPzge8y0DU05yzcKBlkiuufKWcBONbJlKq4 VVsBANdv5/t8wzmsAk2iADDQpHChbqDZjBrDOaz/s29fKBv/35uxJ7fO5+dSGmiaenrtQYovtA4q GWiOXloHlQw0VcRAM7zo4oOqDjimnw2/aWZHAvsRqYV9idTCvkRqYD/SF74epAYGmsro5nqzrVW6 6fAtVWbOCDTQVFpzFm5UtI0va2cy0CRyxkCTwoXqgaZtpGbBTwbc/FFJFaPUz+fxNdDs7DL5FGpq HVQy0By9tA4qGWiqiIFmeNHNB1UKaexHpBb2JVIL+xKpgf1IX/h6kBoYaCoTrtfbSAWawSwGmkRW DDQpXAQn0ByZ8jXQBOBTqKl1UMlAc/TSOqhkoKkiBprhJVw/qNLIYj8itbAvkVrYl0gN7Ef6wteD 1MBAU5lwvd4YaBKFDwaaFC5GW6AJWENNJbQOKhlojl5aB5UMNFXEQDO8hOsHVRpZ7EekFvYlUgv7 EqmB/Uhf+HqQGtiPlAnX88RAkyh8MNCkcDEaA02ltA4qGWiOXloHlQw0iWSE6wdVGlnsR6QW9iVS C/sSqYH9SF/4epAa2I+UCdfzxECTKHww0KRwwUBTntZBJQPN0UvroJKBJpGMcP2gSiOL/YjUwr5E amFfIjWwH+kLXw9SA/uRMuF6nhhoEoUPBpoULhhoytM6qGSgOXppHVQy0CSSEa4fVGlksR+RWtiX SC3sS6QG9iN94etBamA/UiZczxMDTaLwwUCTwoG59zmMRRVOjzW1dGgeVCqpppaOoAeanV0mzcNK BpqjU78OwkoGmkQSwvWDKo0s9iNSC/sSqYV9idTAfqQvfD1IDexHyoTreWKgSRQ+GGhSOCh5WIPa hmanx7pNZs3DSiXVbTIHPdDs7jZrHlZ6q+5us1rdgXRkYED7sNJbDQww0KRRKFw/qNLIYj8itbAv kVrYl0gN7Ef6wteD1MB+pEy4nicGmkThg4EmhaqBgUGYe5/jYVU9CkurMDAw6LZNc2un5oGlp2pu 7QSAoAeafX0WzQNLb/X8uSXgPkH6MzQ0pHlg6a0GB4d8Pi4GmhTywvWDKo0s9iNSC/sSqYV9idTA fqQvfD1IDexHyoTrefIWaM5ZuFHzwFJJoMlisQqdrl2t28Ji+VK37xXDWFSBJ81tkmGmoNtk1t30 s00tHeg2OUYkBjvQBPQ9StPU04vh4WG/jov0T8+jND397vCEgSYRERERERERUYjiKC+i0MRrl0h7 IxFoAtaRmnoJNju7TOjuNqOvz8IwcxQYGhrSTbDZb5tmdmjI95GZAgaaREREREREREQhiqEIUWji tUukvZEKNIlIHQw0iYiIiIiIiIhCFEMRotDEa5dIeww0iUILA00iIiIiIiIiohDFUIQoNPHaJdIe A02i0MJAk4iIiIiIiIgoRDEUIQpNvHaJtMdAkyi0MNAkIiIiIiIiIgpRDEWIQhOvXSLtMdAkCi0M NImIiIiIiIiIQhRDEaLQxGuXSHsMNIlCCwNNIiIiIiIiIqIQxVCEKDTx2iXSHgNNotDCQJOIiIiI iIiIKEQxFCEKTbx2ibTHQFP/LJYX6O42o7PLhI7Obs2rx/wMfX0WrU/LqMVAk4iIiIiIiIgoRIlD ERaLFZpFRNpgoKlvPeZnmgeYcmXq6dX69IxKDDSJiIiIiIiIiEKU1kEMi8UKvIhIGww09auvz6J5 aOmtOFJz5CkONGvqGsFisVgsFovFYrFYLBaLxdJPaR3EsFiswEvr3yMs1mit6ton9npc8wRV1Q2o elyPR9X1qKiqQ3llDUrLH6O4rAo37xRoneWMKnoenSlUZ5dJ69M06ty8U4DisiqUlj9GeWUNKqrq 8Ki6HlWP61FV3YDHNdbrmSM0iYiIiIiIiIiIiIgoLHCEpn51Pe3RPLBUUjSyOOUsERERERERERER ERGNKgw09UvroJKBpj4x0CQiIiIiIiIiIiIiIknDTU0Y+NvftG6G6hho6pfWQSUDTX1ioElERERE RERERERERE6GTSYMbNpkXe91yRKtm6M6Bpr6pXVQyUBTnxhoEhERERERERERERGR3WByMvrffdca Zo4fj8GkJK2bpDoGmvqldVDJQFOfGGgSERERERERERERERGGsrPR//779iDTHmimpWndNNUx0NQv rYNKBpr6xECTiIiIiIiIiIiIiGgUGzIaMbBokVuQKdSQwaB1E1XHQFO/tA4qGWjqEwNNIiIiIiIi IiIiIqJRaLipybFOpocaNpm0bqrqGGjql9ZBJQNNfWKgSUREREREREREREQ0igybTBhMTvYaZA6M H4/+SZO0bm5QMNDUL62DSgaa+sRAk4iIiIiIiIiIiIholBjKzkb/u+8qCjMHxo/HwJIlWjc5KBho 6pfWQSUDTX1ioElEREREREREREREFOaGjEb0v/++8iDTVoNJSVo3PSgYaOqX1kElA019YqBJRERE RERERERERBTmhvLy0D9pku+BZlqa1k0PCgaa+qV1UMlAU58YaBIRERERERERERERjQLDJhMGVq/2 KdAcMhi0bnZQMNDUr4CCxuJ0fDp7Of73DAX16Q+4x0AzZDDQJCIiIiIiIiIiIiIaJYby8nwKNIdN Jq2bHBQMNPUrsJGTrbjw1QpERsV6qSX47GwrR2iGEAaaRERERERERERERESjwHBjI/rffVdxmNk/ aZLWTQ4aBpr6FfB0sFVZWPG+50Dz7VWnUMopZ0MKA00iIiIiIiIiIiIiolFgYMkS39bQXLJE6yYH DQNN/VJjfcvSw19gvFygOXk9dt/nGpqhhoEmEREREREREREREVGYG0xN9S3MHD8eg0lJWjc7aBho 6pcagWZH511s/Ug60Pyvr66hSYXnoJHFQJOIiIiIiIiIiIiIKIwNV1T4HGYOjB+PwbQ0rZseNAw0 9UudQLMbTRf34L9cA7HTLLQAACAASURBVM33v8aZJnX2TyOLgSYRERERERERERERURjr/+gj7wHm pk0YMhoxsGiR/bEhg0HrpgcNA039UivQ7OiswdH4xaJA8xMsOFyh2v5pZDHQJCIiIiIiIiIiIiIK U4NJSV7DzP6YGKefEYLNYZNJo1YHHwNN/VIv0OxGR1kaFky2Bprj5x9Cnor7ppHFQJOIiIiIiIiI iIiIKAwNGY3ew8xJk8I6uJTDQFO/VA00O7uRl/Q3REatwMaLrarul0aWkkDzxYt+BppERERERERE RERERKFi2GRC//TpXgPNIaNR66ZqgoGmfqkdaHY0XcAXm87gkcr7pZHlLdB89tyC9o6nDDSJiIiI iIiIiIiIiELFQHy81zBzMDVV62ZqhoGmfqkeaAapaGR5CjR7n/Whrf0pA00iIiIiIiIiIiIiolAx lJfnNcwc2LRJ62ZqioGmfmkdVDLQ1Ce5QPP5cwta27oYaBIRERERERERERERhYrhxkb0v/uu53Uz Y2JG5bqZYgw09UvroJKBpj5JBZqWFy/Q1v6UgSYRERERERERERERUSgZWLLEc5g5aRKGGxu1bqbm GGjql9ZBJQNNfZIKNNu7utHS2slAk4iIiIiIiIiIiIgoVAympnqdanYoL0/rZuoCA0390jqoZKCp T66BZndPL5pbOxhoEhERERERERERERGFiuGKCq9h5uCBA1o3UzcYaOqX1kElA019cg00m1s7GWgS EREREREREREREYWS/o8+8hxoxsdr3URdYaCpX1oHlQw09UkcaHZ2mdDU3M5Ak4iIiIiIiIiIiIgo VAwmJXleNzMmBsMmk9bN1BUGmvqldVDJQFOfhEDTZH6GJ81tDDSJiIiIiIiIiIiIiELFkNHoOcyc NAnDFRVaN1N3GGjqV2eXSfOwkoGm/giBZkdnN540MdAkIiIiIiIiIiIiIgoJwyYT+qdP9xhoDuXl ad1MXWKgqV/d3WbNw0pv1d1t1vo0jTpCoNnc2sFAk4iIiIiIiIiIiIgoVAzEx3sMMweTkrRuom4x 0NSvvj6L5oGlt3r+3KL1aRp1hECz7kkrA00iIiIiIiIiIiIiolAwlJfnMcwcWLxY6ybqGgNNfdPz KE1TTy+Gh4e1PkWjTk1dE9o7nqKuoYWBJhERUSixdBQh58xpHDmWjaxbj8GJLoiIiIiIiIhGh+HG RvS/+678upnvv49hk0nrZuoaA0396+uz6CbY7OwyobvbjL4+C8NMjdTUNaG5tYOBJhERjWZmNN/L Rfq5Oyh+XIPqZr1HgxaUpW3Fe5NjERnlqAlzd+NSo9ZtIyIiIiIiIqJgG1iyRD7MnDQJwxUVWjdR 9xhoEoWWmromNLa0M9AkIqJRylKAfXELnYJBe01diskfrMVfD9+Cnt62Wm4nY6oQYk77FJM/WIq3 hP9e8AMKtW6gQt0mMxqb21FT18RisRRUY3M7uk16/8IFEREREREF22BqqsepZoeys7VuYkhgoEkU WmrqmvCkqY2BJhERjU6Vh9dJh5kuNXHtBZ2EmhZkrI2zhZcpyLetP26+dwgzomIRGbUYG65q20Il mls6NA+HWKxQreaWDq0vYSIiIiIi0shwRYXndTM3bdK6iSGDgSZRaKmpa0L9kxYGmkRE5EFRBd6M NuDNA20Kf6ANiUsMiIguQUZQGxa4jLVCaBmHWTuvo7j4DpJXL9VxqPkAu+Zb2zM/pUby8VWZWrVN mW6TWfNAiMUK9eJITSIiIiKi0an/o4/kp5qNidG6eSFFaaDZY36Gmjrt7wgRjXY1dU2oaxjVgWYt YqINiHCtWfn4t0UP8MmBWhR3DEj/aHaJ+8/ZqxCJRY5NMzbbHl/xCI+VNKvxMabNtP5MjMwMAZba JhzaW4zx84wYY3veMXPyMf7zh0greeHrifCoInkuxo2bi2TFU69LnVcjXp5XhLkpDWiwqNo83fP5 /NnCI9d+NWZOPv5teTHWpzaiRuY+ZsmBQg/9UhwuCYGTAa9srYeSl8RyuxyvS/Rvsd6SWiQmPMAb MUb7874UU4iJCY+QWytzLfnFgktr38a4t9fiki/9ydyOrAMlGP/nfLzkcn7krrVQZP+d46UUB5Rh HGjmbFlsDSw/SMYt4UHj95iu45GahSd3YE7cXpf1MkMn0OQ0syxW4NXY3K71pUxERERERCNsMCnJ 87qZJpPWTQwpDDSJQktNHQNNa/C24AE+Tih11OdFeHWOLZCZmY8P0jvcAx9boPn630qdfzahFB8n PER2tWNTR7hQgA0/eW+VYV+Bh5BlAA0Xy/DLmbaQ8JMHmG173tmrC/Cy7fH/3PcELYGdHJufsH3K OExYkgblE5xJnddijLOd05dWVKJo1ISafpw/W3j0yrJip341e3Uhxs4SQvcibLjhnmpaA00jxm2Q 6pdVuG/f0hFoRswsxnGvjXuO4+uEkFIq0HwBY8oDjLWF12OXO9o+bbktPJS7lvzRkYYlE8ZhynYF F5SgsRax84xu7fs4oRjj/5yPhboONJ/j6sFijI8pUxQQ3j/u/Nr/zzKjZL/4x4VuZU8fxoFm4f7P bGHlZ0gyWntn05mt+H1ITD8rFjqBptZBEIsVLkVERERERKPHkNHocarZ4QrFI1HIxjnQHJIMNHuf 9cFkfobaen4GI9JabX0T6htbUf+kVSbQ7BolgebmWol/G0BDbgXeizEgIjofMdku4ZEt0FQyqitj swERfy7Emx8qGA1nqceiDw147c8FkvvvulhqDY1iinFIYiSmpbYBifH5iIg2IvJAa8DhkeXSWrw9 7m2s9WkYnNx5NSNnawEioo14L1VhkBLi/Dp/HsOjFyjPKLUG2jMLkZjvPOrRGmjKj6B0sAVOSwrx ZrQBv0np8rx55SP8Jlrol+77LzlciDHRBoxZVi45ErO3pBqxcUbpa8kPvo8aHsDlrUZERBditUQQ rH+BBYTK+4WMMA40LWe2OsLKyYvx3gdL8VaIranZUZiL9DPHseIDa9titmcj/YyHulKEDg2/VKJ1 CMRihUsREREREdHoMGwyoX/6dNkwcyhb19/S1y1PgeaL/gGnQLOuoVnr5hKNenUNzXjS3O4INFs6 GGi6EaZ/jSnDVfENYF8DzegSLNpq9Doarut0McZEF2DDPon9WxqwLMY6ou5Io+wuAEsrvlxiQMTM B9hf6b198jqQtmQCxk3ZDh/GwcHjee14jGnRBkR8/hheIrQw4Of5UxAeCdO/jlntPI2x74FmGRat MCBiwUMYPGxt2FeAiJnF2LBLYv+Vj/DOTAMiFpTjjqeQpLEGH3wocS35zJ9Rw8LxVqAkkKfWDAPN oDmfhAkKAkx9hppNyNj4qV/tnzAjCRme/o4EkbeQ5vDnf8HE6L9gYvQOHHb99yM7bP+2Hok5rtv/ BRM/P+W2v4tfr/f8M07l2Maftjiey73mfH1D9POnsMJDm+Xa7faz4oo7iItK9m1v91+w4oj7Y25l 24f8ORM/t9K6gcQ4+f14PO/eji/nIObInnep45V4DtE+vP+89HnwdL7s591DnxFvw0CTiIiIiGh0 G4iPlx+duWmT1s0LWa6B5tDQsFOg2Wd5gd5nfejpfYaGxlatm0s06jU0tqK5rQP1T1rR2OwcaLa1 P2WgKbBOAWtETLZo5JkfgWbGTw/xerQBr++T+0ZHMzYssK21KbF/S3YJxigZTQfAklOGV3wKICRU JGPuuHGYq3wYnI2n8+oeLPWWVGOl03Sq+Ri/tQaVUqGXuR1pW4vs246ZU4S5qc3olX09XqA8owwT PxHWGjVi7PIyiXVGB1B56SHeXySsrWhd83Op0ik5pfh7/hSFR8IUsM4hle+BZgXunC7GmGgjpp9+ Lr1pRzWmz7SOLi6S2L8wze2iHO9rZD5OKXK/lnzk36hh2/H+uRw3lfyYvT8NoOHiQ0xcYLT3t5UX u2EBYCmvwcrVBfb+8vN1FbgpERAp7d/23xMw4+aBYrw604CIZZXIllsX1cvvLTHZfmHpRm5KiWgt XiNe/qQYia6jWEV90lLbgMR1jumtX/7kAVZmuk4l7CHQNLcj7esH+IUwrfesfIzfWo1yrQbOFqZg hp+BptahZkf6V36HsZFRsZiwOsuHLwWoJ6iBpkQQ5Fug6bwPNQNN5wDOz0DTU/CoZaDpQwjn8Ryp EGi67V8qbHU9Xtf9yAaaMmGyX4GmTKjLQJOIiIiIiESG8vLk182MieG6mQFyDTQHB4dsgWY/+iwv 8Oy5BT3mZ2hq6cDQ8LDWzSUatYaGh9HU0oGWtk40NLbZAk3rlLPC+pkMNAX5FXgj2oA3/in6JoY/ gSa6sHuFAREfluGyRKhiDSGtwVKJLcQQ7//qdiMioh9gf7X7z7rvrBYxMw2IWP0I9Qo2l/LT9ikY N2EJ0ny+4+3pvDZg2YfiEZrWbcfMK8InB6pw8mwVEjcUYEy0AWO31DmP4mysRUyMNUT51ecPseds DfbsLcavZhkRucz9fAEDKDpQiDHRRvx8dRn2nK3B4QOl+O08o9t0rdYpU414dWUpEtNqcPLIQ0xb bAwoEPb7/CkcDWfJtPbBDzJFx+FHoFlim+Y4YoXzaE+BNYS0rv9q7cvi/Xdj/2prn77qw7G9sr1B ydYS/B01DPs1NXZdlffwzHZ9T9tSilfnFWHlkRocPlCCX82yroW75lINYmKM+OWGChwW9VnXEbO+ 9G/h98Sh9GJbuGh9fX7Mr8PJs5WY/WcDIqKL8LezNTh5tgYnbykf4yzXL4QwWrieTh4pw/gY63TG O8XbCn0yqQIxMRLXU7QRkYfF/VUm0LS0InGZERGzCjDx60fW85FQhFdnGjBmWYU2a+tarmHtH/0P BbUMNR3rf/pZ81NQqEG7gx1ouv6c50BTtK045FISrHkMNEUhpNOIQWE//gSa4gBMYtSmSoGmXJAm dy6cA0TXdnkKG13PqeMY/A80HedoTpzcCFfpANfpuCUDTecw033kpvg18HYMLm1wOY6LX69noElE RERERBhubET/u+9Kh5mTJmG4UaOpl8KIkkDT3PscbR1PYTI/07q5RKOWcB12dpkYaHof6SSxnV+B pjClrNRoONuIO9t0nO6BZgd2LrOOMLuj6NgCnGLTcglr3x6Ht9de8mMdTvnz2pJZglecRpnWYeeu BjQ4PYkZRz53DW8HcHV7vvQajPag02VE67UyjI024oOMbudjEKY+tYe9jVjzZwMiFlXAOe95gYZa mVGL3gRy/pRO7ymxnV+BJoRRyNbQ0pl11LAQ1LkHmnWInenLFMJKrzkZfo8aBmDpwJGN+dawcFYh 5qbUo0Yu2LRd3xEfliBd9N5QmOo3ItqA13c1il5boc+6nnul/dtxbt9cVog1V7vQ69Sg4Ew5W5L6 0G0tXuEYnUJnW1+LkLqezE+weoHBZTptqfbaruEPS5Dmss6q8HvhnaParK3blLkDEwMJBqPi8P63 dwJes9hXDDQ9jIQTBUSKA02nwND6uCqBpsR+Aw80ZUIyDQJNt6BS5nicA0FP7Q8g0LQHkeuRmOPY zi18lByRKnouiUBTfIyS09D6dAzObVCyPwaaRERERESjz8CSJfLrZhqNWjcvLEgFmgOD1mlnLS/6 7etoPjWZUf+kBUNDQ1o3mWjUGRoaQlNLO56azOh91ocnzW1oaraGmS1tnQw0FW0nBB4KpoIUB5pO 08qKN7IFBkLQ5x5o+hpQBhZodqQtwYRxU7Dd12FwAKTOl6XDhPyMUvxypgERMaU452XUolsAY5v2 dMy6asngzP182QJimeO3jnYtQboFsAeaSqcjVSCg8xdwoCndL53359I/RNPKik9BV3YJXhFNJ+se aPoaUAYWaPo/alhgnVp4yjxhutNCLMxodwkPYb++X9vl+k03W1+JLsYRlzZ0pRcr/pKDVMBoPbdy U0qP5BqaEq+REGjKjOIVjt0xWliivbY+Jt2vbSO3N9aMeCgoCDjUnJyEcyPcZvlAcymWHr6D4sc1 KL6ViqXTR0uguQOJEoGi5oGmt9F+fgWankLBkQ80nZ5Tbj1NHwI8fwNNxznbgcPi8+XaJvHxfi3x +ri9ZkrDZP8CTX9DTSIiIiIiCl+DqamyYeZgaqrWzQsbkoHmgHug2dP7DF1Pe1D3pBVPu80Y5vSz REE3PDwMU08vGls60PW0Bz29z9D7rA+t7V2OQLOVgaa7jseYFm3AmC11jsdsgcfrfyvFxwkuddx5 jUznQNN5Ck+rAVzeanQa4SQbaI7ICM0KJM8dh3Fzk+HHODjYz6tEvbS4DOnlLusnWp6j+GoVEneW YvbqQvybfT0/0fHfLsdr0QZEHpZJstxGzNoCErnQOVoczAlT0xrw0uISJJ5vRVdAqUqA509poClx ToQpRMdtcO+X/3BaD9S1f7j3QQhTJC94CIPtEdlAcyRGaAY0atiVdW3V39qCzbGba5xHUWa7T+dr ZTtvbqN5IT9qW0n/htS5lXjeIASavVWNyD7yEB8nFGP8nwsca32Kf3fY+qR7wOv8744+K9Hea9Z1 fT1ek/6OKFdJYKHmDr9em0DIBZq/33zN6RqxXN6F34+SQFMqxNJmylnXkpgi1udAs8ll+loF+/ZS StbQVLSeqILAT3xuvE2nqmS9Tvdz535OpUfMuge4btu5BZrSga3U6y0Ek/LH4Dg/3kYXM9AkIiIi IhqdhisqZMPMgfh4rZsXVoRAUwg1xYHmi/4B27SzfTD3PkeP+Rm6nprQ1NyOmvpmVD6uR1lFNUoe VuNBWRUKSx4h/0EFjEUVuF9Ybq2CMtzLt9ZPxlIWS7YyL93Czn2piir3dkFQa+e+VHz9XRq+TT6J PYdOY/+/MvBdSgb2/ysDew6dxrfJJ/H1d2k4cz7Pp2MUroX7BWX2a8RYVIH8BxUoLHmEB2VVKHlY jbKKalQ+rkdNfTOamtvR9dSEHvMzmHuf49nzPnSbzGhq6XAJNK1hJgNNwH4j3mk6RD+nnAXgGA23 udYaAkmMjpNaQ/PcFh/W0BSmAvVnxNNP2zFl3AQs8XsYnO28LnhgD9NWHKhC9m3XaTQBS/4jvGdb F/PleUWYZtv2238UOB+/t/Pt9u+2Nqwot643KFl1KLIfojXgGjfHMXJvbsoTtPhz+IGeP4WBZv3R B4iINmLZNcdj/k45a233Q7wufl7bf4tHDLqHbrapkJWuoVlaiUjX9WgVCmzUsAxLB46sy3dfA1K2 v3n4ooDEzyju35D4PSH1vKoGmmZc3l5gm4I3H2+sLsHHCQ+x52w5fiMTaMr2SSWBpu38/OYbueux BicvtyoMxoPH31Bzwuos+D1w2E9ygeaM/Q9cNkzBjFETaLqHUZ4DTc/ho3qBpusoPD8DTbfw0Mu+ tQg0ZUZoBj3QlBplKjk6Vmpbl/aPUKApf+6VjQIlIiIiIqLw1P/RR9LrZsbEYNhk0rp5YcU10BSP 0nzR3+82StPU04uupz3o6OxGa3sXmls70NjcjobGNtQ9aUFNfROq65rwuLYRVTVP8Ki6AY+qn+BR 9RNUPm5wVDWL5Vxlj2rx3ZFMRVVUWhXUOpR6DofSs7Dku3/grS9nYNymqfh/Pv8N/t8N7yJqawwW 7/8H/nXmAh6UV3s/NlG/F66FR9UNqKp5gse1jaiua0JNfRPqnrTY1sa0rYvZ3oWOzm50Pe2BqafX PjrzeZ8Fzy0v0CQzOpOBJp4jY7MREdFF2F0pejiQQNO+HqR1n+4jNqUDTWFaR+kpKZ1ZciRCWEUs uLT2bYx7ey0u+T0MTukoPNsIQIk19dyO33a+p6XLrGnp9nrYAt1llXjoU9tfoPx8BeYuto3c297g YyCswvlTFGjaAqMPy3BZ9DwBBZrowv7VRts+pUZsSo8ivLOrABGiaWk9sfZ15xBWmUBHDXtgeYLV f3Y5F6oEmj70b4x8oCn8jnhzX7PLFw1s168vgabtSx+O0cIS7b1YijGeRlnriK+h5oQFyciVGbwa THKB5oRVGRBHHU1pWzAhhAJN52lD/Qg0XcLAFZ/7EGi6hHG+tkUuhBQ/nzVACyTQlA4JHdtpMOWs eOSogkAzGFPOeg1Bxe3yFn5+vkM+0PRy/O6BprJw0i2IVjBSk4iIiIiIws9gUpJ0mDlpEoYrVL8r RnANNYc9jtI0mZ+h22S2h5ptHU/R0taJppYOPGlqQ0NjG+obW1H3pAW1Dc2oqW9CTX0zauqbUV3X xGJ5rKs3jThwNNtrlTysCVqVVdRiy9EDeGPju/i/14yTrV+s/y12Xz7i0/EJ10JNfRNqG5pR96QF 9Y2taGhsw5OmNjS1WNfEbOt4ag8zu01mmESjM/ssL/CifwCmnl6nQFMIM0d9oNmSXYKx0QaM3VLn PHIooEATQOUj/CbagNf3VWHDAgPGfP7YaTSgVOCBjlrEfGhAREwJMjzdPLe04sslBrcwSpGONCyZ MA5TAhoGF8DapDbWNS5Fx28b2ee6xqOVLXxzOl/d2L9aeq1DReznsNS3dfHUOH9eA01hilyXUYUI NNAUQi4jph+twvSZBry+q9HpfEtOi2pr75hlFSjyFOI21uCDD52nsFUs4FHDnkicC1UCTR/6N7wF mraRsCoGmrJ9pfoR3pEJNOWmFjbsK0BEdAHW3BYekQg0hf0qnp5YW0pDTa3CTMDTGppxeG/FQRw5 k40j336J9yaH1hqanoI8qYDR+3qYPo68DKAtSqY4dQvIAgg0XYNCRWFpEAJNRWGl03S5ns+774Gm klGpovMoc7xKR1y6nSNVAk2X45Bbi1RUREREREQUXoaMRtmpZofy8rRuXtiSmnZ2cHAIA4OOUZrW UNMiGWq220ZrCsFmY3M7GpvbbQGnNaxpaGxD/ZNW1DeyWPJVXdeI4xlXcDj1vMd6WFUflMp/WIG/ HN+IV9eOU1wrT3yh7PieOK6FhsZWPGlqs18rQpDZ2t6F9s5umTDTgj7LC1he9ONFfz8GBgfR3tHt Nt3s6A00Ld3IPVCMV2caMCauDFddc5RAA008x/F1RkTMNGKMxOg2yUATjoB1TFwp0kpeuDe7tgEb VhgREZ2PmGyz98a5qEiei3Hj5iI5oC/8+BhorniEx6JHLfkViJzpusagbbTbzEIk5jufK+ntgcdH H2BMtAFjN9e6TR3be78Cuy4L/2VGQ63r6MLnOPK5D1Op2qhy/jwFmuZ2pG0txEvRBoyNr3IL1QIN NIFma8A+U2JUMuTWeXSsQTo2vgK5bucS6C2pwgfzjJKvn3dqjBquQ/zGR7gn1bb7D/Gma1iuZqCp qH97CzSFf/cvoJcPNF1/95iRsTlfdg3NiOgCLL7i/HvFfjxO50RqRKltBLDk76YXMB54hEu+H1pQ eQs1tQwzAU+BpsLSaaApO9pP/LjkyDyX4MhtvUnfA01f2yIdQjqHq/6P0LyBxDjX9or3rc0ITaeR kV5COOdRlK7HcgorlKxdKnV8boGxzGsosb3z8boH4fb9ufQnp5/zJ9A8ssO9reLpZzlCk4iIiIho VBk2mdA/fbpkmDl44IDWzQtrnqadtY7SdEw9Kw41TT29eNrd4wg2O56ireOpPdxsaetEc2uHraxh J4vlrQxFD5Fy4qLHqqppVL2qa5uwPO0feHXdOJ/rw0NLFR1bc6vjmhCukdb2LrTZgkghyHzabZ1m VhxmPu+z2MPM/oEBDAwMovdZn9t0s6Mj0BSt9fhxQilmry7E2FnWde9eXVOBm1I3rG3hxet/K3X6 WaH+ccEx1atcUCFM+Sg1Yk0u0AQGUHTUGrRGRBsxdnmxqN0FeCnagIjofLx3tNX3tTPxE7ZPGYcJ S9ICXAtOaaD5HOe2WNcvfHVlGfacrcGevcX41ax8vLPa/fjtwcnMfPz260c4ebYKiQlFeHVWPlZu lwigLK3YucI6Eu6lxcVYf6QGJ9Mq8IntPDkHT0b8fHUpEtNqcPLsI6z/e4F1BOQBX86jSufPFh69 sqzYqU9NW56Pl22v+6+21qBSomFCSDVug3S/TLYPHJUP5qzTwhowZl2120g66UATAMy4/LU1aI2Y acQvVpc42r3MaF2ncWYBluX4HrKrOmo42oixix5gtus14zrqWZVA07f+7S3QFF6XsfEPcfjsI8Tu q1N89JJBd1Gl9XqaVYi5B6qs18bKfLy0+oHsGppvfF6Mf5+Vj98mVODw2Rrs+foBfj5L6osG0lPk WvIr8Z+2362/+vwh9pytweEDpZi4wOj36NNgkws1tQ4zgTAONGVGykmOtPMSHElPyerb6Dlf2uJt DU1H4OdpRKF1n9KBpod9S41W9CPQlGuz93UtlYxE9HIMfgaaju2lRrOKn9O2P08BrktwKbf2plx5 X0PTto3HfXkelctAk4iIiIgo/AzEx0uPzoyP17ppYU8caMqHmgNuoWZP7zP02EZrCsFmZ5cJHbYR ZvaAxTY1LYultM5euoWjpy7LVm1Di6pV96QVP9w+i1c3jPO70u6dU3Rs7aJrQ7hWOrtM9iCz22RG j/kZenqlwswBe5g5OGi9Tru6e5zCzNERaLrUSzEFGP/5Qxy62y0fZtnCC7kSj66TDyqso+Gk1sSU DzSteqvqsTvhAd6IMYraXYiJCY9wpcp95KYSlktr8fa4t7HW/2FwNkoDTQCWDqRvLbIHyC9/UozE G2bZ4+8tqcbC5fm24NaIsctLsPuGWT6Aso20dZwna6C1MqNdtG5gFzK+fuBlGwWHotb5s4+GE5cR L88rxMSECmRJjMwVCOdNrhznx0Mw11GN6TOl18SUDzQBYABdhdVY/3kRXp1jFLW7CNP2VqO4w9eR mVbqjBoeQMPdKqz/vAj/FuPetnLXnFWVQBM+9W9vgaawLyHU/vnuJ4qPXm7kbsuNCrz/iS1wnpWP 8VtrUGnxvIam08/MNOIXq8uQXu762sqv+WmpbUDiOuFLI9bnfWN1meSIc71oykxymrZVD2EmAFhu J2NqAIHm1J13ezRTuQAAIABJREFU/PjiS+CUBJqy4ZHECEDF4ZefgaYvbfEYaDqFi/4EmvIhmXMo N/KBptyoTp/Op2QYqCDQVLB+p9t0sV5GpIq3l5pCV8nr4DXQdBtB7PkYGGgSEREREYWvobw86XUz 338fwyaT1s0Le54CTWHqWXGoKayp2fuszx5sCiM2u01me8AphJwslq/V2t6F9KxcHD9zRbKeNLWr WhV1dXhn1wz8bOM4v+vfv3rbp2MUrhHhmhFGZApBZu+zPvuamU5h5uCg/docGhrGwMAAOrtMoyXQ JIcOpC2ZgHFTtiOQcXBaqT/6ABHRRiy7plULQvv86Zdao4aJAmPpqMTNc9nIuvUYfowzDhILytJ2 YMpUX8PMhZiyNgNlWqSZ8CHQZLFYHouIiIiIiELfcGMj+t991z3MnDQJwxUBfbuffOBtlKYj1HSs qWkdrWkNNu3hpi2QMZmt1WMrU08vi+VTPWlqQ9rZq5KV+2MBGhrbRFMa+18tbZ34+soB/GzTfwRc u/MOez0u+zUhXCO2kc5CiCkEmc/7nNfMFMJM8ejMoaEhDA8P48WLfqdRnww0R4OKZMwdNw5zAxsG pxHbeqR+ri+oipA+f/ql3qhhonBmRvPjGlQrrGaNE1mtQyAWK1yKiIiIiIhC38CSJZKjM4eyZabt o6DxOlJTtKameLTm8z6LfSraZ88t9lBGCDlZLH+rqqYRJzOvS9bp8zfwoKwKrW1dAVVb+1PM/eEv +NkX/yFf3x1GSe9zZJ/2sM0X/4E/HftU8bGJrxPh2hGuJfGoTPGameKRmUKYKdTzPot9ClsGmqRj A2jILMHYaANe2VzrtuYjERHpS2Nzu+ZBEIsV6tXY3K71pUxERERERAEaTE2VDDMHk5K0btqopSTU FI/WFIJNIdwUSghmWKxAq6a+Gaeyc2Xr4vWfUPKw2ro2pY/V0tqJuoYW/H/bo/Czzb+WreWlFpwv vYbnpes8bvfv237n8/GJrxvhWnIKMkWjMuXCzOHhYQBAn+UFA03Sj4yt+XhjdQk+3vsIJ8/W4OSR h5i9Mh9jog0YM68UGTpY046IiDzrNpk1D4NYrFCvbpN+Jr8mIiIiIiLfDVdUSIaZA4sXa920UU8u 1HQLNm0jNoWyBpxCGOMIOlmsQKut4ymyLt/G6fM3ZCvz8m3cvl+CB2WP0dTSgc6nPZLV2v4UldUN uH2/BJfz7uHKTQPe3P4ufvblf8jUelx8kYsV9v+V285avhyXcK0I1474ehKuMecgUz7MFPT3DzDQ JH2ozn6IacsLMHaWARHRBkREG/HyvCLMPVCLct7XIyIKGc0tHZoHQixWqFZzC1eVJiIiIiIKdf0f fSS9bqbJpHXTCHKhpvNoTXGwKYzaZLGCVc/6+nD1lhFnLtxQXBeu3UXOjfvIuXEfF67dRVbObbdt rt4y4n8l/id+tuXX0pWVi/6K9fjZll9jZcUAKu/Mkd92y68DOkZhNKY4yBSPyvQWZgoYaBIREZGq uk1mTj/LYvlQjc3tHJlJRERERBQGBpOSJEdnDldUaN00EpEPNd1HbEqGnCxWEOrR4wacy7mDjAs3 VamrN42YkDQNr235tWStrBjE5Szbf2flYaAtBf8ls+34PVP8Oiap60g8ItOXMBNgoElERERERERE REREFJAho1EyzBzKzta6aSTBNUDxFG6KSyqgYbHUrEfVT3D24q2AKyfPgFkHl0oHmoeO4NHgDfzV /tgG5AzW4LtD0oHmjB8W+HwcUtePpxDTW5gJMNAkIiIiIiIiIiIiIvLbsMmE/unT3QPNTZu0bhp5 IBeoSIebriUV1rBY6lVVTSNu/VSMzEu3fK4LV+/irrEM/7x5DK999R9u9V93a6Wft3Kj5PY78vb7 0Hb568bbNecNA00iIiIiIiIiIiIiIj8NxMe7r5sZE6N1s0gBbwELi6WHamrpwMNHdbhXUIbb94qR c+O+PbjMuXEfuT8W4F5BGYrLH6PuSQte9PdjeHgY3X0mTNg7Ba999WtRfYh/dg7jyrlfOz9+7gaG h29g1VfOj7+x83fo7jMF/RiVYKBJREREREREREREROSHobw89zBz0iQMm0xaN438pHV4xWKpWT/W 3nMOLg8fwWOJ4FIu6EwrOqt6m/zFQJOIiIiIiIiIiIiIyEfDjY3of/dd93UzjUatm0ZBoHUwxWL5 WwvSV9gDylWPhjH8aKNLmGmtKT/VOv3bgvQVAT2v2hhoEhERERERERERERH5aGDJErcwczA1Vetm ERE5MVl6sPLceryW8GvFNfPYApgsPVo33QkDTSIiIiIiIiIiIiIiHwymprqFmQObNmndLCIiWSce ZHoNMt/4+nc4cP+o1k2VxECTiIiIiIiIiIiIiEih4YoK93UzY2K4biYR6Z7J0oMD949i5rEFeOPr 39lDzJnHFmDnzf1o6G7UuomyGGgSERERERERERERESnU/9FHzmHmpEkYbtRvCEBEFA4YaBIRERER ERERERERKTCYlOQ2OnMoL0/rZhERhT0GmkREREREREREREREXgwZjW5h5uCBA1o3i4hoVGCgSURE RERERERERETkwbDJhP7p050Dzfh4rZtFRDRqMNAkIiIiIiIiIiIiIvJgID7eed3MmBgMm0xaN4uI aNRgoElEREREREREREREJGMoL885zJw0CcMVFVo3i4hoVGGgSUREREREREREREQkYbixEf3vvusU aA7l5WndLCKiUYeBJhERERERERERERGRhIElS5zCzMGkJK2bREQ0KjHQJCIiIiIiIiIiIiJyMZia 6hRmDixerHWTiIhGLQaaREREREREREREREQiwxUVzutmvv8+hk0mrZtFRDRqMdAkIiIiIiIiIiIi IhLp/+gjR5g5aRKGKyq0bhIR0ajGQJOIiIiIiIiIiIiIyGYwKclpdOZQdrbWTSIiGvUYaBIRERER ERERERERARgyGp3Xzdy0SesmERERGGgSEREREREREREREWHYZEL/9OmOqWZjYrRuEhER2TDQJCIi IiIiIiIiIqJRbyA+3nndTNP/3979fldZ34neP/9FHuUBa41dZWWt4+S4ZrDjnHKP4nTmrqnN4qBF qJ36i96oLZ7WmjW1Y2kdm5HGmig/TA9WJiCEH00QrD9ALJWiiEIUqKUMAocB2wIOGlmJWv3cDxJI dkjg2slO9vVNXq+1Pk9kZ+/P/iaz1qy+13Vd75V7JQB6CZoAAAAAAExon2zdWnCr2U/37y/3SgD0 I2gCAAAAADBhfXrsWHw0bdq5mPnJxo3lXgmAAQRNAAAAAAAmrI9vv73v6swf/rDc6wAwCEETAAAA AIAJ6c+rVvU9N/OrX/XcTICcEjQBAAAAAJhwPt2/vy9mXnVVfHrsWLlXAmAIgiYAAAAAABPORzfe 2PfczNdfL/c6AFyAoAkAAAAAwITy54cfPhcz/7xqVbnXAeAiBE0YJe3zaqKiqnfmbRyFT9gYc6r6 PmNO+yh8BAAAAACMM5+8/vq5mPnxPfeUex0AMhA0YZQImgAAAACQL5++9158VFvb89zMr341Pn3v vXKvBEAGEy9odh6IbWuao+6WO6L6ypkxqV8QqqiqjUum3hjVM+qirrEttv3H++XelkEVhrxSzGjE QEETAAAAAPLl43vu6YmZV10Vn+7fX+51AMho4gTNzr3Ret+34tLqYkLX/NCI8kjQ7CFoAgAAAEBW n2zdeu5Ws59s3VrudQAowoQImt1vrYmbptYOI3QJmiPVfXJ/bFvTHLfNmBnzSnaYgmYPQRMAAAAA svj02LH4aNq0+Pjyy+PP/+f/lHsdAIo0/oPm8Y0x54rCeFU5ZW7c1rgqNu88GIfe7jd7t8WGf2+O b87+Wu+taAXNkRmt4PZ+/OHtAb+7AfPiA7f2/c6/2BQvXuT1f+gs1W59BE0AAAAAyIePb7+95+rM e+4p9yoADMM4D5onon3e9QXPyPzcvc/Gke6L/2T3yY5orXssnh39Jcex8gW3Nxvn9P3ev9Qcb47d R58jaAIAAABA+f151aqe52Z++cvx6XvvlXsdAIZhfAfNQ8vj2n7B5zO3r4/j5d5pQhE0BU0AAAAA KJ9P9+/viZlXXRWf7t9f7nUAGKbxHTTb5/e7OvP6uHtTuReaaARNQRMAAAAAyuejG2+Mjy+/PD7Z OBr/+xwAY2VcB83fLpzbL2jOiYaOcm800QiagiYAAAAAlMefH344Pr788vjzww+XexUARmhcB81T K+pG7wrNjuaYOmgsfT8OPr8svjn71ph8We+/V8+IS2fUxY9W743Owd6r+2S8sfqRuGHGjX0/UzU9 Jl95R9zW+MvYN+gPDa3zDztjc/MjcfPsW6P6iukFzxC9ZOqtce09zbFh7/uZ3muoKNe5ty3qZn89 Lqnu+bfKKd+Ox/YNeH2WGZXQN/ygORZnF/F+HHxpZdTNvjUunVJ77jWTrrgxvnDLI/Hzlw4M/ndy nuEHze7Dr8TP6+viC1fOjElVhX9zN9SvjG3/ke07AgAAAEAeffL66/Hx5ZfHx3PnlnsVAEpgXAfN 2NYYfzlaz9AcLGh2vhqLvjbzggFv0nVLY3d339t0v7Umbppae+Hod8W3o3lX10VX6n5rfcz78oyo zBQTp8fn79t00fM4P8p1xe6l347J571fzxmkGjTH5uwiug8/G3XXTL/oZ0y67tHYetE/1mEEze7D 8fR9t/WLmEN/x3/8t1975iwAAAAAyfn0vffio9ranudmvvdeudcBoATGd9CMHXH/1f0jzcyYvnRX dF/8By9uYNDctSsaaguvtqu+cva5Kxj7T+Uta+J4RHTvWh7Tr+j3b5fNjOorbyy4aq8vas6P9ovU pYKId3aqZ8SlV94Y1Vf2v/qz76rDaY0XPo+BUa5704ODxMy+oPnsfT2f1TMzC8JZz5kMmPueL8Vv 48JnkSFojsXZxfGNMaf/77tqeky+8gJ/J1Pvv8jvvMig2b0rGq87P6ZWTpk9xHesicnzNoqaAAAA ACTl43vuiY8vvzw+3b+/3KsAUCLjPGhGHG+fPyDA1calt68s+jau5ykImrfGtbN6rsyc/LXm2FRw u8734+Dzj8Y/FsSi6+Oup1/tC6CX3Rn3P194m9HO/9gc9w+IT5PvfeGCAe1slJt01V1Rt2xb7PvD wNuGvh8Hn28ujKhV34xFvx/6PQuj3KO9gbg2Lr19WWzbf7Jnn8534rVli2PZvoE/nc4zNEf97G5f cu73XTn1nmh4fn+cKvhl9tyGdt6AqzfPxu/BFXO++6N5Vv9QPj0+X9cWrxV8z644tX9zNBRcZVwb 1y71//gBAAAAkI5PNm6MTzaOzp3hACiPcR80I7pid+Pc828letnXYlbj5jg43LBZEDR75jO3t8WR IYpj964lBa+vvGx6z07Vc6NhqNvJdv8mftD/CtMpD8bmC6z025afRsOWwxe9AnXgLn/1bzuGfG1B lJtyfXymqjamPfTqqD/jcaSKDZqjfnbVtVFZVROTv7a84JbD53/AW7F8Tv+geH3c9exQtxvOfr5v Luz/fwMzY866C33XY9E+r98OU+rjuZJc1gwAAAAAAFC8CRA0IyLej53N98Slg9zWs+Ky2+K25mGE zYFBs7oull/w3pxd8Vzd9efdtvSGFccu+DGnVtT1e/1X4wfbitxzUCdi+S399pi1PA4P8crznomZ IQ72SSdoZjeCs7u6MX6TJQweXx83TekXv+esi1ODvjDj+Z5cF7P7/e1PfSjDbZcLfqY2ZreeyLA4 AAAAAABA6U2QoNmjc2/bebf07B825y17ZcgrLM8zIGh+pm7Txa/ua59feKXo1Y/Gqxf7nH1LY1q/ n7lp3VBX6xWnIPhd4MrPwihXbNgaj0FzbM6u8JmedbH85GCvyna+h5feNYyrLQsDfOW8jaV59iwA AAAAAECRJlTQ7NHzLMSvTK2NwcJm5dTvx8/3Dnx+4iAGBM1MoXHAz/zlA7/JsG9htJra2JHhZzJo n9/ve8+PoVpjYZT7fqwtqmqNz6A5rLMr9ratBX8r18fdmwZ7UZbzLbyiNNvfXI+Cq4O/uCR2F7E+ AAAAAABAqUzAoHnW+7Fvw6ODh83q2XHTircufEVaQXCaEw2ZOmNhgLphRZYr9jqi4UvDD5qdfzgY h3a+EGvWLosfffdf4+bZt0b11BkDnimaMcrVLo3fFvXpaQfNkp7dLWuGuG3sULL8rWQ532fijuph /g4yhlsAAAAAAIDRNIGD5lnvx77VP46rpgwMm9PjHxde4FmDJQia2eJSkUGz+2S8saE5bpsxOy4Z 7Jmhg07GKDdvY5aFR/h9S2NYQTNXZ5fl957hfA8tj2szfY/hf08AAAAAAIDRJGie1bk3Wr9z84Cr 7+bEg7uGuJVsDoPm8a1D30q3b2rjkqk3xt9eNVPQ7Cd/Z1eioDngNseCJgAAAAAAkBpBs0BX7G6c WxA1K2ctjwODvTRnQbN7V3NMG3BV4aQr7ogb7muOJ9a2x+adB+PQH/o9G3Q4z4Ecp0Ezn2e3Kx78 YqmDZk+Qrb5yOPOTeLbIbwAAAAAAAFAKguZ59kfzrP5X6t0VzYcGeVmuguaOuP/qfhF26vfj5x0n L/wMUEGzVxpnN+xnaO5bGtPOvebWeHBXkWsAAAAAAACUmaA5iFMr6voFq+vj7k2DvChPQXPTg/GZ Incp/I4TOGjm9ewK/r6G+BvMdL7l+x0AAAAAAACUgqA5mIIr8LLcyrO8QbMg3n1xSezO8K6/eeCr gubA143m2dUujd8Wsf/hpXf1+4y6WH5ysFdlOd/CW9f+5QO/KWILAAAAAACA8hM0B1EYk4a4TWeO gmZBOLt9/YVvlxoRA2+zOpGD5pidXdU3Y9Hvs26/PxZd1+9nZy2Pw4O+Ltv5br73+r73mlIfz138 SwIAAAAAAOTGuA6abz7REItefb/InxoQk6rnR/tgAShHQbMgWGW4yvD4uu/3u83q2AXNaQv3Fvnz w5c1aI7Z2VXVxOR5G+N4ht0LP6M2ZrcO9vzMiMx/Tzsejb/q937TGndlCLcAAAAAAAD5ML6DZuOc qKiaHp+vWxnb/iND2Ow+HFsemBuV/SPUvS8MHn9yFDQLryidGXdv6hr6K+5qjmnVhaFt9IJm4e1O K+esi1NFvsNwZQ2aY3Z2GWNi56tLCj/jQs//zPz3tD+aZ9UWfM856w5niJpdcWRLc3zlR89c9JUA AAAAAACjZQIEzb6YdMnf3xXfbFwVm3cejENvvxOd3Sfj6NsH49DebbG68YG4ZmptYYC6Yn60D3VJ XY6CZvx+Wfy//feuvjnuWL03Ovu/pvNAbGq8Jy6t7jmLG275zhgEzQFXQFbNjDmrD5zbq/vwi/GD haMTy7IGzTE7uytmxuTev8NLb26OTQMCe/fJ/f0+4+wuc6Nh19CBtai/p46lA2JsbXxubnNs6Dh5 XtjsPnkkXtvQHLd9eUZP3B/G7x0AAAAAAKBUJlDQLHKu+HY0Xygm5SloRlfsbiy8srQniM2IS6+8 Maqnzii86nTexjjePn9Mgmb3tsZ+tzvtnctmRvWVM2PSKMayzEFzzM5u/fmfc9nMqL7yxqi+Yvog f4MzY077sYt8y+L+no4/+2B87rwrTGuiomp6TL7yxqi+8saYfNkg/y5oAgAAAAAAZTSug2b34Rdj 0bdu6wlnmWd6fL6uLfZ1XuTNcxU0IyKOxXP33nx+mCuY2vjcvc/Gke6IGKOgOWQwHOVYlj1oRozd 2R2Lrf9250X/Hiun3hMNWy8WMyOG8/fUuXdl3DTwSuQLfOdLvvzjaN1b7HNoAQAAAAAASmdcB81z Ot+J1zatiob76uILA69Cq54Rl155a1x750+iYc22+P3JC93is5/cBc2IiK441dEWP7rljoKr/iqn zI4v3PJItPa/veiYBc2evY5sWRa3zZgdl1T3O/cZP4hFmcJd8YoLmj07jtXZde79ZTR86/zP+dvZ D0TDho44dfGHW/Yazt9TRMT7cfCllT3fdcAVqJOuuDGqZ9RFXWNbtufOAgAAAAAAjLKJETQBAAAA AACAJAmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoA AAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBu CZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAA AEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAA AAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4J mgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAA QG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAA AAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbgmaAAAAAAAAQG4JmgAAAAAAAEBuCZoAAAAAAABAbo3L oHnw8LFxPbv3HIjdew6UfQ9nkH0AAAAAAAAYnnEbND/88KNxO2cjWbn3cAbZdwUAAAAAAGB4BM0E J6WY5wwETQAAAAAAgJEQNBOclGKeMxA0AQAAAAAARkLQTHBSinnOQNAEAAAAAAAYCUEzwUkp5jkD QRMAAAAAAGAkBM0EJ6WY5wwETQAAAAAAgJEQNBOclGKeMxA0AQAAAAAARkLQTHBSinnOQNAEAAAA AAAYCUEzwUkp5jkDQRMAAAAAAGAkBM0EJ6WY5wwETQAAAAAAgJEQNBOclGKeMxA0AQAAAAAARkLQ THBSinnOQNAEAAAAAAAYCUFzhHPmrV/FT5taov7x7XFo3Ma8o7G1pSXqmwpnweJ10bJpTxzrLE8k LN0ZdMXp//vb2LrhqVj42JOF33NRazy54/iIdwUAAAAAAGB4BM0RzenY3bYiFqzcEEub1sULh1KM eVmmN2guWR9rntkSTz2zJZ56ZlO0LO2JfwuWvxpHx2yXEp/BmROx77lfxIKmlqhfuDIWr97U+/22 xFPPPBs/X9oaT7x0dMS7AgAAAAAAMDyC5kjmv96M1oUrom3P2/HC4y3x0+d+n1bMyzy9QbNlx4Bw +W50rF8V9U2r4unfjdUupTyDd2PPhtaob1oRS54evStNBU0AAAAAAIDhEzRHMO+8vCHqF26OPWc+ ikMvrov6Jb+Kt86kEvOKmaGC5kfx4Z7NUd/UEm17xmqX0p3BOzuejgVNK2LpS0fjzCjvCgAAAAAA wPAImsOed2L7ypZYsGFfTww7tD0WNa2I1t2nk4h5xc3QQfPQi+uivmlDbH9nrHYp1RkciGcea4n6 x7fFwVGO0IImAAAAAADA8Amaw53egNm2p6v3vx2OFx5viQVtb8bp3Me8YmeQoNn5X3G4Y0ssWfhk PPGb0b3CcVTO4OC2eLSpJX42wudjZt0VAAAAAACA4RE0hzmHXlx37nazBf9tDK5WLFvQbBo4q2Pt zqOjHnBH4wz+tOPpMXv2p6AJAAAAAAAwfILmcObM/ti4pCV++sz+wisTj+6InzW1xLKX38l1zCt+ eoPmkvWx5pkt8VTvtC5fGQuaWqJh5atxZAyeHVrKMzj6UnvUN7XH1qNjsysAAAAAAADDI2gOY868 9av4adOq2PhW14B/6w1/j2+PQzmOecXPUM/Q7IoTb2yOxqaWaHzu92N629nSBM22+NWRsdkVAAAA AACA4RE0i57TsbttxSC3X+0/a2LTwfzGvOJnqKD5UXz44Z/ildaWqF+yNX43ZvuU4Az2bI76ppZo ff30mOwKAAAAAADA8Aiaxc5/vRmtC1vip8ufP3fr1YJ56qlobBrkdrR5inlFz4WC5kexZ0NL1Ddt jj1jtk8JzuCPr0dLU0ss+MUbcWoMdgUAAAAAAGB4BM0i552XN0T9oLebHRD/Fm6OPaP0XMl8Bc13 YvvKBK/Q/PB07NmwKuqbWqNtz7ujvisAAAAAAADDI2gWNWfj3a/irQvEyp7ouSJad4/O7UzzEzTT fYbmhx9+FB+e2hdtj7VE/cLVsXbnseg87zVdcWL/9tjw8tER7woAAAAAAMDwCJrFzKHtsaipJRZs 2HfhePfOa7GsqSXqf/FGnM5rzCtqeoPmkvWxpt/tdVuXr4wFTS2x4Imt8dapsdqltGdw5sjrsfJn Pc9EXbB4XbQ8dfb7PRs/f+zJqG9aESt2/mnEuwIAAAAAADA8gmYRc+jFdVHftCLa9gx1u9mz86d4 pbUl6ps2xPZ38hvzsk9v0GwqnAWL10XLpj1xrHPsQuaonMGZE7H/5RejZVlrNJz9fotao3n1r2Pn 2ydGfOWpoAkAAAAAADB8gmaCM/ZBM3+T0hkImgAAAAAAAMMnaCY4KcU8ZyBoAgAAAAAAjISgmeCk FPOcgaAJAAAAAAAwEoJmgpNSzHMGgiYAAAAAAMBICJoJTkoxzxkImgAAAAAAACMhaCY4KcU8ZyBo AgAAAAAAjISgmeCkFPOcgaAJAAAAAAAwEoJmgpNSzHMGgiYAAAAAAMBICJoJTkoxzxkImgAAAAAA ACMhaCY4KcU8ZyBoAgAAAAAAjMS4DZrjeXbvORC79xwo+x7OIPsAAAAAAAAwPJmD5uGjf0hmDh5O 48o9M3Fm68sd5wYAAAAAAIDsMgfNlCLhwcPH4oMzXeN6tr7cUfYd8jIpnYWgCQAAAAAAUBxBM9FJ KeI5i8JdAQAAAAAAyE7QTHRSinjOonBXAAAAAAAAshM0E52UIp6zKNwVAAAAAACA7ATNRCeliOcs CncFAACggn9NAAAXVklEQVQAAAAgO0Ez0Ukp4jmLwl0BAAAAAADITtBMdFKKeM6icFcAAAAAAACy EzQTnZQinrMo3BUAAAAAAIDsBM1EJ6WI5ywKdwUAAAAAACA7QTPRSSniOYvCXQEAAAAAAMhO0Ex0 Uop4zqJwVwAAAAAAALITNBOdlCKesyjcFQAAAAAAgOzKGjQ7/3N3rP3ZimjbI2iO54jnLAp3BQAA AAAAILuyBM3OP+yP7RvaoqGpJeqbWgTNcR7xnEXhrgAAAAAAAGQ3xkHzeLy8emUsaGqJ+kVtsbJ1 jaA5ASKesyjcFQAAAAAAgOzGOGgejZdWrYvWF38bxzo/iqMvtQuaEyDiOYvCXQEAAAAAAMiurM/Q FDQnRsRzFoW7AgAAAAAAkJ2gmeikFPGcReGuAAAAAAAAZCdoJjopRTxnUbgrAAAAAAAA2QmaiU5K Ec9ZFO4KAAAAAABAdoJmopNSxHMWhbsCAAAAAACQnaCZ6KQU8ZxF4a4AAAAAAABkJ2gmOilFPGdR uCsAAAAAAADZCZoXmnc7YsX35sVf/XVtVFTVxKQr66L++bdjx09ui4qqmp65s23kP1PWiHciXlv+ YNRcPSMqq2qioqo2/uLzc+OmR5+Pt949//V/fG11fOeGf4q/qO75LpV/PSuuvmNp/PJ3p8977and a/u9dnr8j5sXx3MHX436a2rOncXNqwVNAAAAAAAAhiZoDhkzX4n6a2v7IuTZqf5GfOPOIeLkcH6m rBHv7Wi98yvn79s7n53dEjv6vf7g6n+Jzw7x2oq/+d+xZEe/mLl9cfxd9fmvq7z2h3GzoAkAAAAA AEBGguYQ8+t//achQ1/B9IuTw/mZcka8HQ9/o/eqzJr47C0t8dofu+KDP+6LlnORszZmtvxnz+t3 NPcFyr+pi8deOxEfnDkRe5f3Rc7KW1rj6Jmu+ODMtrhvWoZzEDQBAAAAAAC4CEFz0Hk25k3pf1Xh Q723VD0Rezc8VHjl4bk4OZyfKWfE67/vHfHwG/3+7YWH4tKzu35jbZw60xUb6647t/8/PLqn3/v8 Kr73/5x9n+/Fine74oONP45LzkXL2vi7+b23r/3jvtgwvy+iCpoAAAAAAABcTFmD5mjNiIPmjsXx P89Ft9uifkfhv78wf/b5cXI4P1POiFew7wXmmsWx40zhcy+Hnp7vXfC80GsWF9y2tjCACpoAAAAA AABcmKB50dj3L9E64N8Lgt2gQTPjz0yEoHnedy18L0ETAAAAAACACxE0Lxr7BtyO9czpWH/3dRcJ mhl/JjdBc+C+A6cwQhbecvb8KQia/2tpvNH/39/9Zdw5RdAEAAAAAAAgG0FzsDn6ZFzf78rDz97S Eq8c7X0e5pofx5TBnoc5nJ8pZ8R7ty1u7rfTZ2cvjg1vHItTZ7rig3ePxf6XVsd3vt3Se7vY09F6 Z23f/n/zv6N+w5tx9N2efzv6u+3R8r0fxZLe2+we/fl3+121+ZWY+bNXe177x32xuu4mz9AEAAAA AAAgM0Fz0PnPWHZLv4A3YCqraweJk8P5mXJGvNOxse4rGW432/P6Uxt/HJ/NcLvZD850xQdHW2Nm 9VCvq43Kfv8maAIAAAAAAHAhguYQc2r74vi7waLc3/wwFswf/BmRw/mZska8g7+MeV8YOsL2D5of nHk71g+4unLIoHnmdGz/yTcGfe1n72qO73mGJgAAAAAAABkJmheKmrvXxndu+Kf4i+qaqKiaHp+d /mD84nenC58ROSBODudnyhrx3u2Itp/8S1z9+RnnAmTlX8+Kq296OFpeOzHg9adjd9viuGn6rN7v VxMV1TPiv0//bvzL8l3xx4GvXflg1Fzd+76XfSWu/t6GeOvdwudxCpoAAAAAAABciKA5jBlOnMxt 0BzzETQBAAAAAADITtAcxgiaIxlBEwAAAAAAgOwEzWGMoDmSETQBAAAAAADITtAcxgiaIxlBEwAA AAAAgOwEzWGMoDmSETQBAAAAAADITtBMdFKKeM6icFcAAAAAAACyEzQTnZQinrMo3BUAAAAAAIDs BM1EJ6WI5ywKdwUAAAAAACA7QTPRSSniOYvCXQEAAAAAAMhO0Ex0Uop4zqJwVwAAAAAAALITNBOd lCKesyjcFQAAAAAAgOwEzUQnpYjnLAp3BQAAAAAAIDtBM9FJKeI5i8JdAQAAAAAAyE7QTHRSinjO onBXAAAAAAAAshM0E52UIp6zKNwVAAAAAACA7ATNRCeliOcsCncFAAAAAAAgu8xBc/eeA3Hw8LEk ZveeA2UPVyKesxhqVwAAAAAAALIbt0Fz68sdxuRyAAAAAAAAyG7c3nJ2vBPG+qR0FintCgAAAAAA kAeCZqKEsT4pnUVKuwIAAAAAAOSBoJkoYaxPSmeR0q4AAAAAAAB5IGgmShjrk9JZpLQrAAAAAABA HgiaiRLG+qR0FintCgAAAAAAkAeCZqKEsYiPL7983AwAAAAAAACDEzQTJWgKmgAAAAAAABOBoJko QVPQBAAAAAAAmAgEzUQJmpFkEOz/e0txfwAAAAAAgLEmaCZK0EwzCAqaAAAAAAAAxRE0EyVophkE BU0AAAAAAIDiCJqJEjTTDIKCJgAAAAAAQHHGOGh+EMc6fh0ty1qjoakl6ptaouGxp6Lt5QNx4oyg WQxBM80gKGgCAAAAAAAUZ0yD5rGXN8SCphXxyKpNsfmVPdHx2o5oW74yFjS1ROOGfXFK0MxM0Ewz CAqaAAAAAAAAxRnToHl0569j+6EPBvz3d6Nj/aqob1oXLxwSNLMSNNMMgoImAAAAAABAcfLxDM29 W2JBU0u07PiToJmRoJlmEBQ0AQAAAAAAipOPoHlwWzza1BJLf3Nc0MxI0EwzCAqaAAAAAAAAxclF 0Hzn5Q1R37Qqnv6dW85mJWimGQQFTQAAAAAAgOKUP2ie2hdtj7VE/ePb41CJ3lPQnBhSDIKCJgAA AAAAQHHKGzQ7D8evlq+I+oXrY+uRrpK972gEze7DL8b9102PqY35CImlCppvNs6JiqqaQWZONOTj qw5pVIJg9+HY0vyD+MIV03vPoTYu+fsfxppDpXl7QRMAAAAAAKA4ZQuanf+5O9b+bEXUL9oQWw99 UNL3LmXQ7D7ZEa33fSsure4JfeMtaG78Tm1UVH09ar/7r3FnwSyKDYdK8hGjpuRB8PimuPsfaqOi anp8/pZHYvHa9ljT/EjcPPufY2GJfu2CJgAAAAAAQHHKEDS74vjrm+KRhS3RuGZHHDhV+tvYlipo PnvfzJhUVRMV1bPjK1+bMy6DZvu8mqiY8mBsLsm7ja3SBsFjsfyW2qionhsPvvp+Cd5vcIImAAAA AABAccY4aHbFkZfWx4Km1ljx8uHoLHHILHXQbK+bGV+oWxmvHO6KaJ8/DoNmV6y9vSYqvtQcb5bg 3cZaKYNg96YHY3JVbVy7dH8JNhuaoAkAAAAAAFCcMQ2ap/duicam1mh740ScGaWYWepbzp4zLoNm RzR8SdCM6Ir2ebVRMaU+nusuyWpDEjQBAAAAAACKM4ZB80/xSmtL1K98Ld4ZxZgpaBajN2jO21iC 9xp7pQuCL8TdU2qi4vb1Mco9U9AEAAAAAAAo0hgGzX3R1tQS9Y//Mp56ZssQsysOCZqZlCZo9oa8 qrNTG5dMvSNua/xl7OsswduPspIFwUPL49qqmvjbh16NI1uaY9bfz4jKqpqoqJoek2f8OFr3lu6Z moImAAAAAABAccY+aF5wNsceQTOT0gTNHbH0uz+Jhn9vjzVrV0XDfffFtVdNj4qqmqj8h4bYfLIE HzGKShYEO5pjalVN/GXt3JhcPTuuuac5nljbHovv+1ZcWl0TFdVzo2FXV0l2FjQBAAAAAACKM6bP 0ByrETRH4v3Y+dDcqKyqib/6tx2j9BmlUeqgOVi47N7VHNOqa6LiumVxYGSfEhGCJgAAAAAAQLEE zawmTNCMiO5NcdeUmqioXRq/Hb1PGbGSB81Bn6F5IpbfUhMVVd+PtSV4wKagCQAAAAAAUBxBM6uJ FDSjIxq+VBMVX2qON0fxU0aqZEGwe33cVFUTFfM2DvrP7fNqoqJqbjTuG9nHRAiaAAAAAAAAxRI0 s5pIQfPsFZqzlsfh0fuUEStdEHw7mmcNdVvZ3is0q++PwXNncQRNAAAAAACA4giaWU2YoPl+7Hxw TlRU1cbs1hOj9BmlUcogeKr1n6OyambMaS/82+netSSmVtXE5HtfGOR2tMUTNAEAAAAAAIojaGY1 HoNm+49j8oy6uLN+WaxZ2x5PNP4kbrhmelRU1cTkeRvj+Mg/YVSVNgh2xMLrpkdF1fT4/C2PxOK1 q6Lhnm/FpdU1UTn1/mgv0WEImgAAAAAAAMURNLMaj0HzlSfi2i/Ojkuqa6KiqiYqqqbH5C/eFXWr 90bnyN991JU8CHYfji2N/xxTptRGRVVNVE75elx7X1vsK+FhCJoAAAAAAADFETQTNarP0ExEikFQ 0AQAAAAAACiOoJkoQTPNIChoAgAAAAAAFEfQTJSgmWYQFDQBAAAAAACKI2gmStBMMwgKmgAAAAAA AMURNBMlaKYZBAVNAAAAAACA4giaiRI00wyCgiYAAAAAAEBxBM1ECZppBkFBEwAAAAAAoDiCZqIE zTSDoKAJAAAAAABQHEEzUYJmmkFQ0AQAAAAAACiOoJkoQTPNIChoAgAAAAAAFEfQTJSgmWYQFDQB AAAAAACKI2gmStBMMwgKmgAAAAAAAMURNBMlaKYZBAVNAAAAAACA4giaiRI00wyCgiYAAAAAAEBx BM1ECZppBkFBEwAAAAAAoDiCZqIEzTSDoKAJAAAAAABQnMxBc/eeA0nNeCdoFgbB1AcAAAAAAIDB jdsrNLe+3DGu57/dGhN+yh0hBU0AAAAAAIDRN26D5njnCk1BEwAAAAAAYCIQNBMlaPZJ6SxS2hUA AAAAACAPBM1ECWN9UjqLlHYFAAAAAADIA0EzUcJYn5TOIqVdAQAAAAAA8kDQTJQw1iels0hpVwAA AAAAgDwQNBMljPVJ6SxS2hUAAAAAACAPBM1ECWN9UjqLlHYFAAAAAADIA0EzUcJYn5TOIqVdAQAA AAAA8kDQTJQw1iels0hpVwAAAAAAgDwQNBMljPVJ6SxS2hUAAAAAACAPBM1ECWN9UjqLlHYFAAAA AADIg7ENmu/si82/eCoWPvZk1De1RH3Tk9G47LnYuv9EnBE0iyKM9UnpLFLaFQAAAAAAIA/GNmju /VUsXr0pnnlpd3R07ImdL70Yy362IuqbWqNtz7uCZhGEsT4pnUVKuwIAAAAAAORB+W85e2pvrF3S EvWPb49DgmZmwliflM4ipV0BAAAAAADyoPxB88OPYs+Glqhv2hx7BM3MhLE+KZ1FSrsCAAAAAADk gaCZKGGsT0pnkdKuAAAAAAAAeVD+oHnm7dj0eEssaHszTguamQljfVI6i5R2BQAAAAAAyIMyBs0P 4t1Dv40X1rRG/WO/jFePlu69Bc2JJaWzSGlXAAAAAACAPBjzoHn0pfaob2o5N03rdsbBU6W96lPQ nFhSOouUdgUAAAAAAMiDMQ+ap4/8Ljo69kRHx+7YuunZWLp4RdQvXB1rX38nzuQqaHbFkS3L4rYZ s+OS6pqoqKqJyilfj2vva4t9nSV4+xEqbRg7+11nxqSqvu/6/619u4SfMXpSioQp7QoAAAAAAJAH 5X+G5ofvxp4NrVHf1BpP/64rP0HzmR/HpKqamHRNXdQ1roo1a5dF3eyvxaSqmqisbY7d3SP/iJEo XRg7Fs/de3NU9n7XHzW3x5q1y+JHd94Vsx5LI76lFAlT2hUAAAAAACAPchA0P4oPj7wSzU0t8bOX juYnaG5cFHc/fTgKu2VX7H5oTlRU1cbs1hMj/4wRKFUYO76iLiqramPaQ69GDi48HZaUImFKuwIA AAAAAOSBoFmsfUtjWlVNfObeF0bvMzIoSRjrfiHuvqImKmctjwMjf7eySSkSprQrAAAAAABAHoxh 0Hwrtjz3Vpw4M9QtZ9fFC4dKE0hHNWieXBM3VNVE5XeeGb3PyKAUYay7fX5UVl0fdz3bVYKNyiel SJjSrgAAAAAAAHkwhkFzX7Q1tcSCxeuj9cXXoqNjT7z84qZoWfpk1DetiKUvHY0zJbriczSDZvez 9fGZqpq4dunbo/YZWZQijG2+9/qoqPp+rC3z80BHKqVImNKuAAAAAAAAeTCGQbMrTux/LdqeXB0P LWyJ+qaWqF/UGs2rfx073z5Rspg5qkGze1c01NZGRfU/x6qTo/MRWY08jL0dzbNqouKLS2Ln4Rej 4bavxyXVNVFRVROTrrgj5q3em8wzNVOKhCntCgAAAAAAkAf5eIZmiWdUgmb34Vg7b2ZUVM2MOe2j eEvbjEYexjqi4Us1UfF3c2PaFbVx6VceiIZ/b481zQ1xzdTaqKiqjWmNuyKFizdTioQp7QoAAAAA AJAHgmYG3YdfjPuvmx4V1bPjjnWHcxH5ShY0BwuXZ69ErfpmLPr9CD9mDKQUCVPaFQAAAAAAIA8E zYs4vvXR+MfLaqLyH+6PtW91lex9R6p0QXPwZ2ieWlEXFVU1cdO6/HznoaQUCVPaFQAAAAAAIA8E zQs43j4/JlfVxufufTaO5OGyzH5GHsa6Yu3tNVFRNT/aB/vn9vlRUVUT0xbuHeHnjL6UImFKuwIA AAAAAOSBoDmUjqUxrbo2pj30anSO/N1KrhRh7PDSu4a8rWzPFZq1ccfGEX/MqEspEqa0KwAAAAAA QB4ImkPYfO/1UTGlPp7L2ZWZZ5UkjJ1cF7Ora2LyvI1xvP9/794VD36pJiqueDA25/T795dSJExp VwAAAAAAgDwQNAfV+3zJKXPja9/917hz0FkUGw6N8GNGoFRh7M3H7oxJVTUx6Zq6+FFzezzR+EBc M7U2Kqpnxx3tpXsW6WhKKRKmtCsAAAAAAEAeCJqD6g2aVReaOdFQxjZVujDWFUe2NMesv58RlVU1 UVE9I6bMbojWve+X6P1HX0qRMKVdAQAAAAAA8kDQTJQw1iels0hpVwAAAAAAgDwQNBMljPVJ6SxS 2hUAAAAAACAPBM1ECWN9UjqLlHYFAAAAAADIA0EzUcJYn5TOIqVdAQAAAAAA8kDQTJQw1iels0hp VwAAAAAAgDwQNBMljPVJ6SxS2hUAAAAAACAPBM1ECWN9UjqLlHYFAAAAAADIA0EzUcJYn5TOIqVd AQAAAAAA8kDQTJQw1iels0hpVwAAAAAAgDwQNBMljPVJ6SxS2hUAAAAAACAPBM1ECWN9UjqLlHYF AAAAAADIA0EzUcJYn5TOIqVdAQAAAAAA8kDQTJQw1iels0hpVwAAAAAAgDwQNBMljPVJ6SxS2hUA AAAAACAPBM1ECWN9UjqLlHYFAAAAAADIA0EzUcJYn5TOIqVdAQAAAAAA8qCooJnSjHfCWJ+UziKl XQEAAAAAAPIgc9BMydaXO4zJ7QAAAAAAAJDduAyaAAAAAAAAwPggaAIAAAAAAAC5JWgCAAAAAAAA uSVoAgAAAAAAALklaAIAAAAAAAC5JWgCAAAAAAAAuSVoAgAAAAAAALklaAIAAAAAAAC5JWgCAAAA AAAAuSVoAgAAAAAAALklaAIAAAAAAAC5JWgCAAAAAAAAuSVoAgAAAAAAALklaAIAAAAAAAC5JWgC AAAAAAAAuSVoAgAAAAAAALklaAIAAAAAAAC5JWgCAAAAAAAAuSVoAgAAAAAAALklaAIAAAAAAAC5 JWgCAAAAAAAAuSVoAgAAAAAAALklaAIAAAAAAAC5JWgCAAAAAAAAuSVoAgAAAAAAALklaAIAAAAA AAC5JWgCAAAAAAAAuSVoAgAAAAAAALklaAIAAAAAAAC5JWgCAAAAAAAAuSVoAgAAAAAAALklaAIA AAAAAAC5JWgCAAAAAAAAuSVoAgAAAAAAALklaAIAAAAAAAC5JWgCAAAAAAAAuSVoAgAAAAAAALn1 /wPgDMpUdUbTbAAAAABJRU5ErkJggg== ------=_Part_3755_2133195409.1664803211395--